CATIONIC ZIRCONOCENE-MEDIATED CASCADE SYNTHESIS OF TETRAHYDROFURANS

by
James Mignone
B.A., Rutgers University: Cook College, 2002

Submitted to the Graduate Faculty of

Arts and Sciences in partial fulfillment
of the requirements for the degree of

Masters of Science

University of Pittsburgh
2005

UNIVERSITY OF PITTSBURGH FACULTY OF ARTS AND SCIENCES

This dissertation was presented by

James Mignone

It was defended on

April 20, 2005
and approved by

Craig Wilcox

Scott Nelson

Peter Wipf
Dissertation Director

CATIONIC ZIRCONOCENE-MEDIATED CASCADE SYNTHESIS OF TETRAHYDROFURANS

James Mignone, MS

University of Pittsburgh, 2005

Tetrahydrofurans and tetrahydropyrans are common structural features of numerous natural products, most notably the marine toxins and the polyether antibiotics, such as brevetoxin and monensin. Despite the structural complexity of these two classes of compounds, a similarity arises when comparing the structural cores. The framework of all polyether antibiotics contains 2,5-disubstituted tetrahydrofurans, substituted tetrahydropyrans and spiroketal systems. A characteristic feature in the core of marine toxins is a trans-fused polycyclic ether moiety. Because of these similarities, it is believed that polycyclic ether compounds have a similar biogenetic origin, and many groups have postulated that Nature synthesizes these compounds via a polyene \rightarrow polyepoxide \rightarrow polyether pathway.

Based on previous Wipf group methodology, enantiomerically pure diepoxide substrates with electronically different ester terminating groups were subjected to $10 \mathrm{~mol} \% \mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ and $20 \mathrm{~mol} \% \mathrm{AgClO}_{4}$. It was found that the 2-furyl and 2-benzofuryl ester moieties furnished the best yields and diastereoselectivities of the desired highly functionalized tetrahydrofurans.

TABLE OF CONTENTS

1. INTRODUCTION 1
1.1. Biosynthetic Synthesis of Tetrahydrofurans and Tetrahydropyrans 1
1.2. Polyepoxide Cascade Cyclizations in Natural Product Synthesis 3
1.3. Previous Wipf Group Methodology. 6
2. STRATEGY AND GOALS 8
3. RESULTS AND DISCUSSION 10
3.1. Route to Enantiomerically Pure Diepoxides 10
3.2. Initial Cyclizations Using $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2} / \mathrm{AgClO}_{4}$ 14
3.3. Optimization Using Group IV Lewis Acids for the Cyclization of 58 20
3.3.1. Optimization of Lewis Acid 21
3.4. Optimization Using $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2} / \mathrm{AgClO}_{4}$ for the Cyclization of 59 24
4. SYNTHESIS OF TRIEPOXIDES 29
4.1. Triepoxide Formation via a Key 1,2-Metallate Rearrangement 30
4.2. Synthesis of Enol Stannane and Homoallylic Iodide Compounds 32
4.2.1. Synthesis of Enol Stannane 32
4.2.2. Alternate Synthesis of Enol Stannane 34
4.2.3. Synthesis of Homoallylic Iodide 35
4.3. Initial 1,2-Metallate Rearrangement 36
4.4. 1,2-Metallate Rearrangment Using Iodohexene and Iodo-3-hexene 36
4.5. Synthesis of THP-Protected Iodo Alkene/Alkyne 37
4.5.1. 1,2-Metallate Rearrangement Using THP-Protected Iodo Alkene/Alkyne 38
5. CONCLUSIONS 39
6. EXPERIMENTAL 40
6.1. General 40
6.2. Experimental Procedures 41
Appendix A 69
X-ray crystal data for 59 69
Appendix B 74
X-ray crystal data for 74 74
BIBLIOGRAPHY 80

LIST OF TABLES

Table 1: Acylated monoepoxide substrates 12
Table 2: Epoxidation of the terminal 1,1-disubstituted epoxide. 14
Table 3: Synthesis of diastereomeric diepoxides. 15
Table 4: Kinetically resolved diepoxides 16
Table 5: Scope of cyclizations using $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2} / \mathrm{AgClO}_{4}$ 18
Table 6: Optimization using $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ of $\mathrm{Cp}_{2} \mathrm{HfCl}_{2}$ 22
Table 7: Optimization attempts using non-group IV Lewis acids 23
Table 8: Optimization of tetrhydrofuran formation using $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2} / \mathrm{AgClO}_{4}$. 26
Table 9: Optimization using other Lewis acids. 27
Table 10: Optimization of triflate formation. 33
Table 11: 1,2-metallate rearrangement using iodohexene and iodo-3-hexene. 37
Table 12: Crystal data and structure refinment for 59 69
Table 13: Atomic coordinates 70
Table 14: Bond lengths [\AA] and angles [${ }^{\circ}$] for jm0326t. 71
Table15: Anistropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 59. 72
Table 16: Hydrogen coordinates (x 10^{4}) for 59 73
Table 17: Crystal data and refinement for 74 74
Table 18: Atomic coordinates 76
Table 19: Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for 74 77
Table 20: Anisotropic displacement parameters 78
Table 21: Hydrogen coordinates ($\mathrm{x} 10^{4}$) for 74 79

LIST OF FIGURES

Figure 1: Structure of cationomycin. 9
Figure 2: X-ray structure of 2-benzofuryl diepoxide 59. 17
Figure 3: Important ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts of the major (70) and minor (71) isomersobtained in the cascade cyclization of diepoxide 59... 20
Figure 4: Important crosspeaks observed in the HMBC spectrum. 20
Figure 5: Target enentiomerically pure triepoxides $\mathbf{8 4}$ and $\mathbf{8 5}$. 29
Figure 6: Expected mode of cyclization for triepoxides 84 and 85 30

LIST OF SCHEMES

Scheme 1: Hypothetical biosynthesis of monensin A 2
Scheme 2: Nakanishi's biosynthetic hypothesis for trans-fused polyethers 3
Scheme 3: Hypothetical biosynthesis of brevetoxin A 4
Scheme 4: Paterson's cyclizations of polyepoxides 1 and 3. 5
Scheme 5: McDonald's oxacyclizations of 5 and 7. 5
Scheme 6: Proposed mechanism for tetrahydrofuran and ortho ester formation. 6
Scheme 7: Alternate mechanism for tetrahydrofuran formation 7
Scheme 8: Proposed mechanism for tetrahydrofuran formation 9
Scheme 9: Route to intermediate 32 11
Scheme 10: Preparation of dihydropyrans (74) and (75) and X-ray structure of the major regioisomer 74. 24
Scheme 11: Proposed mechanism of dihydropyran formation. 27
Scheme 12: Newman projections can account for observed cis-product. 28
Scheme 13: Proposed route to triepoxide 84. 31
Scheme 14: Kocienski's 1,2-metallate rearrangement. 32
Scheme 15: Route to enol stannane 88 33
Scheme 16: Alternate route to enol stannane 88 34
Scheme 17: Synthesis of 89. 35
Scheme 18: Initial 1,2-metallate rearrangement 36
Scheme 19: Synthesis of 118 and 120. 38
Scheme 20: 1,2-metallate rearrangement using compounds 118 and 120 38

ABBREVIATIONS

Ac	acetyl
Bn	benzyl
BTF	trifluorobenzene
CSA	10-camphorsulphonic acid
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DCC	1,3-dicyclohexylcarbodiimide
DIBAL-H	diisobutylaluminum hydride
DMAP	4-dimethylaminopyridine
DMS	dimethyl sulfide
DMSO	dimethyl sulfoxide
DSS	sodium 3-(trimethylsily)-1-propanesulfonate
HMPA	hexamethylphosphoramide
Imid	imidazole
IPA	isopropyl alcohol
KHMDS	potassium bis(trimethylsilyl)amide
LiHMDS	lithium bis(trimethylsilyl)amide
m-CPBA	3-chloroperoxybenzoic acid
MOM	methoxymethyl
Ms	methanesulfonyl
NaHMDS	sodium bis(trimethylsilyl)amide

ABBREVIATIONS

Py or Pyrid
TBAF

TBDPS
TBME

TBS
THP

TIPS

TMEDA
TMS

Ts
pyridine
tetra-n-butylammonium fluoride
tert-butyldiphenylsilyl
tert-butylmethyl ether
tert-butyldimethylsilyl
tetrahydropyranyl
triisopropylsilyl
N,N,N',N'-tetramethylethylenediamine trimethylsilyl
para-toluenesulfonyl

1. INTRODUCTION

1.1. Biosynthetic Synthesis of Tetrahydrofurans and Tetrahydropyrans

Tetrahydrofurans and tetrahydropyrans are common structural features of numerous natural products, most notably the marine toxins and the polyether antibiotics, such as the brevetoxins and monensin. ${ }^{1}$ Despite the structural complexity of the two classes of compounds, a similarity arises when comparing their structural cores. The framework of all polyether antibiotics contains 2,5-disubstituted tetrahydrofurans, substituted tetrahydropyrans and spiroketal systems. A characteristic feature in the core of marine toxins is a trans-fused polycyclic ether moiety. ${ }^{2}$ Because of these similarities, it is believed that polycyclic ether compounds have a similar biogenetic origin, and many groups have postulated that Nature synthesizes these compounds via a cascade cyclization of a polyepoxide subunit where structural differences may be due to different modes of epoxide openings.

In the early 1980 's Westley and Cane proposed a biosynthetic model for polyether antibiotics. ${ }^{3}$ Scheme 1 shows their hypothetical explanation of the biosynthesis of monensin. In this model, an all-(E) triene is initially formed which undergoes epoxidation at each double bond to give a triepoxide. Attack of the C5 hyroxyl group at the C9 carbonyl position would initiate a cascade of ring closures generating the tetrahydrofuran rings of monensin with the observed stereochemistry. The most important aspect of this model is that with basic manipulation of the starting triene, one could extend it to account for all polyether antibiotics. ${ }^{4}$

Scheme 1: Hypothetical biosynthesis of monensin A.

In 1985, Nakanishi proposed a similar model to account for the biosynthesis of the transfused cyclic ether moiety present in marine toxins. Nakanishi hypothesized that a polyene synthesis occurs via iterative chain homologation followed by asymmetric epoxidation and a series of subsequent endo-selective epoxide openings (Scheme 2). ${ }^{5}$ Nakanishi extended this hypothesis further and proposed that Nature might synthesize brevetoxin A in a manner similar to the Westley-Cane model used for monensin (Scheme 3). In each of the aforementioned hypotheses lies a central unifying concept which is that the biosynthesis of polyether natural products involves a polyene \rightarrow polyepoxide \rightarrow polyether pathway. ${ }^{6,7,8,9,10}$

Scheme 2: Nakanishi's biosynthetic hypothesis for trans-fused polyethers.

1.2. Polyepoxide Cascade Cyclizations in Natural Product Synthesis

In attempts to synthetically support the biosynthetic model proposed for the formation of polyether antibiotics and marine ladder toxins, many groups have explored the polyene \rightarrow polyepoxide \rightarrow polyether pathway. Kishi, ${ }^{11,12,}$ Corey, ${ }^{13}$ and Mori ${ }^{14}$ have all employed polyepoxide cascade cyclizations in their syntheses of polyether natural products. Most notably are Paterson's approach towards the cyclic ether skeleton of etheromycin and McDonald's efficient synthesis of the trans-fused moiety of brevetoxin. Paterson's preliminary studies began with diepoxy tert-butyl ester 1, which upon exposure to CSA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ rapidly lead to the formation of cyclized product 2 in 76% yield.

Scheme 3: Hypothetical biosynthesis of brevetoxin A.

Scheme 4: Paterson's cyclizations of polyepoxides 1 and 3.

Subunit 2 is a common bicyclic portion of a large number of polyether natural products. Exposure of triepoxide $\mathbf{3}$ to similar reaction conditions afforded tricyclic polyether fragment $\mathbf{4}$ in 58% yield (Scheme 4) ${ }^{15}$

McDonald explored the Lewis acid initiated tandem endo-selective oxacyclization of diepoxide tert-butyl carbonate 5. Reaction of 5 with 1 equivalent of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ at $20{ }^{\circ} \mathrm{C}$ afforded the trans-fused product $\mathbf{6}$ in 55% yield. The formation of all-fused trans,trans-tricyclic species $\mathbf{8}$ was achieved by the $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ promoted cyclization of triepoxide 7 in 31% yield (Scheme 5). ${ }^{16}$

5

6

Scheme 5: McDonald's oxacyclizations of 5 and 7.

1.3. Previous Wipf Group Methodology

In the early 1990 's, Wipf and coworkers reported the novel synthesis of ortho esters and tetrahydrofurans via epoxide opening cascades mediated by cationic zirconocene (Scheme 6). ${ }^{17}$ Intermediate-activated epoxide $\mathbf{1 0}$ is then formed which undergoes an epoxide rearrangement initiated by neighboring group participation of the terminal ester carbonyl group, generating dioxycarbenium ion 11.

Scheme 6: Proposed mechanism for tetrahydrofuran and ortho ester formation.

At this point, C2 attack leads to ortho ester $\mathbf{1 4}$ while tetrahydrofuran $\mathbf{1 2}$ is generated via C6 attack. Product distribution is a consequence of the nature of the R substituent on intermediate 11. If the dioxycarbenium ion is stabilized by the R substituent, an equilibrium is established between 12 and 13 followed by irreversible attack at C6 providing tetrahydrofuran 12. Alternatively, if species $\mathbf{1 1}$ is not stabilized, ortho ester formation is observed.

In 2003, ${ }^{18}$ O-labeling experiments were performed by Giner and coworkers to provide further insight into the mechanism of tetrahydrofuran formation using epoxy-ester 15. ${ }^{18}$ The results of this work are shown in Scheme 7. Similar to Wipf's proposed mechanism, dioxycarbenium ion $\mathbf{1 6}$ is formed via acid induced epoxide rearrangement of ${ }^{18} \mathrm{O}$-labeled 15. Subsequent C2 attack provides orthoester 17. In contradiction to Wipf's mechanism, Giner discovered that tetrahydrofuran formation proceeds entirely through five-membered dioxycarbenium ion $\mathbf{1 8}$ which is formed by the ring-opening of ortho ester 17. Alkoxide attack leads to tetrahydrofuran 19 and the regeneration of cationic zirconocene.

Although the results of this labeling experiment exclude the pathway originally proposed by Wipf and coworkers, it by no means proves that the transformation proceeds via a five membered dioxycarbenium ion. Rather it demonstrates that the desired tetrahydrofuran is formed in a less direct, slightly more complex sequence.

Scheme 7: Alternate mechanism for tetrahydrofuran formation.

2. STRATEGY AND GOALS

In spite of numerous literature examples of polyepoxide cascade cyclizations initiated by Lewis acids, no groups have explored the powerful Lewis acidity of zirconium based Lewis acids in synthesizing highly functionalized tetrahydrofurans and tetrahydropyrans. Our goal was to use $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2} / \mathrm{AgClO}_{4}$ to initiate a cascade cyclization of an enantiomerically pure diepoxide, forming a highly functionalized tetrahydrofuran. ${ }^{19}$ Based on previous work in the Wipf group, the mechanism is believed to first involve coordination of cationic zirconocence to the $1,1-$ disubstituted epoxide, thus activating the proximal carbon for attack by the internal epoxide to generate cationic intermediate 20. Neighboring group participation by the ester carbonyl group is then expected to lead to attack on intermediate 21, resulting in dioxycarbenium ion 22. Upon quenching with $\mathrm{H}_{2} \mathrm{O}$, intermediate 22 is converted into tetrahydrofurans 23 and 24 , with 23 being the major regioisomer and 24 the minor. These two regioisomers can be rationalized by hydrolysis of dioxycarbenium ion 22 occuring in a non-regioselective manner (Scheme 8). The structure of these regioisomers were deduced via 1D and 2D NMR spectroscopy (vide infra). Subunits of this type are common in polyether natural products such as cationomycin (Figure 1). ${ }^{20}$

Due to the important role the ester moiety plays in the proposed mechanism, it is believed a strongly electron donating ester group will facilitate the desired cyclization. To explore this concept, a variety of differently substituted, enantiomerically pure diepoxides were first synthesized and then subjected to our cationic zirconocene conditions.

Scheme 8: Proposed mechanism for tetrahydrofuran formation.

25

Figure 1: Structure of cationomycin.

3. RESULTS AND DISCUSSION

3.1. Route to Enantiomerically Pure Diepoxides

The diepoxides were synthesized in a linear fashion starting from commercially available β methallyl alcohol which underwent reaction with (E)-(carboxyvinyl)trimethylammonium betaine 26 to give carboxylic acid 27 (Scheme 9). This acid was subjected to thermal Claisen rearrangement conditions to provide 28. ${ }^{21}$ Subsequent Horner-Wadsworth-Emmons reaction gave the conjugated ester $\mathbf{2 9}$ which was reduced with DIBAL-H to give the allylic alcohol $\mathbf{3 0}{ }^{22}$ Sharpless asymmetric epoxidation provided epoxide 31 in 94% ee based on comparison with a literature $[\alpha]_{D} .{ }^{23}$ The terminal hydroxyl group was acylated with a variety of ester moieties via DCC coupling with the appropriate carboxylic acid or reaction with an acid chloride in pyridine. As shown in Table 1, we were able to prepare a number of ester substrates with different terminating groups (i.e., $\mathrm{R}=\mathrm{Me}, \mathrm{C}_{6} \mathrm{H}_{5}$, $(4-\mathrm{OMe}) \mathrm{C}_{6} \mathrm{H}_{4},(3,4-\mathrm{OMe}) \mathrm{C}_{6} \mathrm{H}_{3},(2,4-\mathrm{OMe}) \mathrm{C}_{6} \mathrm{H}_{3},(3,4,5-$ $\mathrm{OMe}) \mathrm{C}_{6} \mathrm{H}_{2}$, furan and benzofuran) in a moderate to high yield (42-100\%). Due to the difficulty in separating the resulting m-chloroperoxybenzoic acid from the desired diepoxide, some yields were substantially lower.

With intermediate 32 in hand, our initial goal was to epoxidize the terminal, 1,1disubstituted alkene in an asymmetric manner. Attempts to epoxidize this alkene proved unsuccessful using either the Shi epoxidation or a two step protocol involving Sharpless asymmetric dihydroxylation followed by tosylation and subsequent ring closure. The Shi
epoxidation yielded a 1.8:1 ratio of products which quickly decomposed, allowing the isolation of $<10 \%$ of the desired product. Sharpless asymmetric dihyroxylation resulted in a disappointing 1.5:1 ratio of products. Attempts to generate the epoxide via tosylation and ring closure were not pursued (Table 2). It should be noted that there is limited literature precedence for the asymmetric epoxidation of terminal 1,1-disubstituted alkenes by way of the methods previously described.

Scheme 9: Route to intermediate 32.

Table 1: Acylated monoepoxide substrates
RCOCl, Pyr. (Method A)

entry

[^0]This problem was circumvented by epoxidizing 32 with m-CPBA, giving a 1:1 mixture of inseparable diastereomers in $44-80 \%$ yield (Table 3). A late stage Jacobsen kinetic resolution gave our desired enantiomerically pure diepoxide (Table 4). ${ }^{24}$ The ${ }^{1} \mathrm{H}$ NMR of the diastereomeric mixtures contains singlets at 1.34 and 1.33 ppm arising from the terminal methyl group of each diastereomer. After performing the kinetic resolution, the only observable peak in that region of the spectrum occurs at 1.33 ppm , therefore, the kinetic resolution was determined to afford a single diastereomer.

Depending on the substrate used, a $19-44 \%$ yield was obtained for the final, kinetically resolved diepoxide. This was lower than expected when compared to literature examples. Unfortunately, $5-15 \%$ of a cyclized product was isolated, presumably arising from a cascade cyclization promoted by Jacobsen's chiral cobalt (III) catalyst 60. Diepoxide 59 was analyzed by X-ray diffraction to confirm the configuration of the major isomer (Figure 2).

Table 2: Epoxidation of the terminal 1,1-disubstituted epoxide.

entry	conditions	d.r. ${ }^{\text {a }}$	yield (\%)
1	1) t-BuOH, $\mathrm{H}_{2} \mathrm{O}, \mathrm{AD}$-mix $\alpha, 0^{\circ} \mathrm{C}$ 2) $\mathrm{MsCl}, \mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$	1.5:1	----
2	Na_{2} EDTA (aq.), $\mathrm{Bu}_{4} \mathrm{NH}_{4} \mathrm{OH}$ (cat.) $\mathrm{CH}_{3} \mathrm{CN}$, oxone, NaHCO_{3}, ketone	1.8:1	<10 decomp.
3	1) m - $\mathrm{CPBA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{NaHCO}_{3}$ 2) Jacobsen's Kinetic Resolution	$1: 1$ single product	$\begin{aligned} & 80-90 \\ & 19-44 \end{aligned}$

${ }^{\mathrm{a}}$ Diastereomeric ratios based on ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture.

3.2. Initial Cyclizations Using $\mathrm{Cp}_{2} \mathbf{Z r C l}_{2} / \mathrm{AgClO}_{4}$

Based Wipf group methodology, the enantiomerically pure diepoxides listed in Table 4 were subjected to $10 \mathrm{~mol} \% \mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ and $20 \mathrm{~mol} \% \mathrm{AgClO}_{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at ambient temperature. It should be noted that pre-absorbing AgClO_{4} on Celite was tried but the results were comparable to those obtained without Celite. ${ }^{20}$ The addition of $\mathrm{P}(\mathrm{OPh})_{3}$ to the reaction mixture was also explored but there were no observable advantages in reaction rate, yield and/or selectivity. In order to determine the regioisomeric ratio accurately via ${ }^{1} \mathrm{H}$ NMR, it was found beneficial to acylate the crude tetrahydrofuran-diol mixture, improved signal separation.

Table 3: Synthesis of diastereomeric diepoxides.

entry $^{\text {a }}$

[^1]Table 4: Kinetically resolved diepoxides.

1) Catalyst*, TBME
$\xrightarrow[\text { 2) } \mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}]{\mathrm{IPA}, \mathrm{TMSN}_{3}}$

entry

Figure 2: X-ray structure of 2-benzofuryl diepoxide 59.

The enantiomerically pure diepoxide substrates listed in Table 4 were subjected to 10 $\mathrm{mol} \% \mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ and $20 \mathrm{~mol} \% \mathrm{AgClO}_{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature, followed by acylation of the crude mixture. The results of these cyclizations are listed in Table 5.

Oxacyclization studies were first conducted using the electron deficient diepoxide acyl ester 51 which afforded the desired tetrahydrofuran $\mathbf{6 1}$ in low yield (35\%). Similar results were obtained with the benzoic and mandelic acid derived diepoxides 52 and 57, respectively. Interestingly, no reaction occurred for substrate 56 in which $\mathrm{R}=(4-\mathrm{OMe}) \mathrm{C}_{6} \mathrm{H}_{4}$. Based on the assumption that the tetrahydrofuran product formed via the carbocation intermediate 21 (Scheme 8), we believed that increasing the nucleophilicity of the terminal ester group would favor a cascade cyclization. To test this hypothesis, we explored a furoyl moiety as the terminal nucleophile. The 2-furyl derivative 58 afforded tetrahydrofurans 68 and 69 in 56% isolated yield and a 1.9:1 regioselectivity. Increasing the nucleophilicity of this group was accomplished by synthesizing the 2-benzofuryl derivative 59, which upon cyclization afforded 70 and 71 in a 46% yield and as a 4.5:1 mixture of regioisomers.

Entries 5 and 6 of Table 5 gave the most promising results and it was decided that our efforts would be devoted towards optimizing the reaction conditions to try to obtain a synthetically viable yield and ratio regioisomeric ratio of the desired tetrahydrofuran.

Table 5: Scope of cyclizations using $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2} / \mathrm{AgClO}_{4}$.

		$\xrightarrow[\substack{\left.\text { 2) } \mathrm{H}_{2} \mathrm{O} \\ \text { 3) } \mathrm{Ac}_{2} \mathrm{O}, \mathrm{Py}, \text { DMAP } \\ \mathrm{Cg}_{2} \mathrm{ZrCl}_{2} \\ \text { (10 } \mathrm{mol} \%\right) \\(20 \mathrm{~mol} \%)}]{\substack{\text { 2 } \\ \mathrm{AgCl}_{4}}}$		
entry	diepoxide	products	yield (\%) ${ }^{\text {a }}$ (major/minor)	ratio of regioisomers
1	51	$\mathrm{R}=\mathrm{CH}_{3}$ (61)	35	n/a
2	52	$\begin{gathered} \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5} \\ (62 / 63) \end{gathered}$	21	$1.2: 1^{\text {b }}$
3	56	$\begin{gathered} \mathrm{R}=4-(\mathrm{OMe}) \mathrm{C}_{6} \mathrm{H}_{4} \\ (\mathbf{6 4 / 6 5)} \end{gathered}$	NR	---
4	57	$\mathrm{R}=\underset{(66 / 67)}{\mathrm{CH}(\mathrm{OH}) \mathrm{C}_{6} \mathrm{H}_{5}}$	11	$1: 1^{\text {c }}$
5	58	$\begin{gathered} \mathrm{R}=\underset{(\mathbf{6 8} / \mathbf{6 9})}{2 \text {-furyl }} \end{gathered}$	56	$1.9: 1^{\text {d }}$
6	59	$\mathrm{R}=\underset{(\mathbf{7 0} / 71)}{\text { 2-benzofuryl }}$	46	$4.5: 1^{\text {e }}$

${ }^{\mathrm{a}}$ Isolated yield. ${ }^{\mathrm{b}}$ Ratio based on the integration of peaks at 5.35 (minor), 5.26 (major) ppm, ${ }^{\mathrm{c}} 5.07$ (minor) and 5.06 (major), ${ }^{\text {d }} 5.33$ (minor) and 5.20 (major), ${ }^{\mathrm{e}} 5.39$ (minor) and 5.24 (major) ppm in the crude ${ }^{1} \mathrm{H}$ NMR after acylation.

Initially, it was believed that a mixture of diastereomers were obtained when the cascade cyclizations previously described took place. We believed that this was so due to the appearance of two doublet of triplets between $5.39-5.06 \mathrm{ppm}$ in the ${ }^{1} \mathrm{H}$ NMR, depending on the diepoxide substrate used in the cyclization. Therefore, clearly two compounds were formed. After much
discussion, it was concluded that the hydrolysis of the dioxycarbenium ion (Scheme 8, Section 2) might be occurring in a non-regioselective manner resulting in a mixture of regioisomers not diastereomers. To test this hypothesis, a series of 2D-NMR (HMBC, HMQC and DEPT) experiments were performed.

The DEPT and HMQC provided very little insight into the possible structure. The most conclusive pieces of evidence came from the HMBC . Figure 3 details the significant signals seen in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of the major 70 and minor 71 regioisomers. When this data was combined and analyzed in the HMBC spectrum, crosspeaks were noticed between the proton signal at 5.24 ppm and the carbonyl carbon of the acyl group at 170.9 ppm . Also, the proton signals at 4.77-4.42 ppm had a crosspeak with the carbonyl carbon of the furan species. Based on these spectral correlations, it was concluded that the structure of the major isomer 70 consisted of the furoyl moiety attached to the 1° hydroxy group while the acetyl groups were attached to the 2° hydroxy. In support of this conclusion, the HMBC displayed a crosspeak between the minor proton signal at 5.39 ppm and the carbonyl carbon of the furoyl group at 159.2 ppm . From this, it was concluded that the structure of the minor isomer $\mathbf{7 1}$ had the furoyl species attached to the 2° hydroxy group. The correlations between the proton and carbon signals for the major and minor isomers are shown in color in Figure 4.

70
Major

Minor

Figure 3: Important ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts of the major (70) and minor (71) isomers obtained in the cascade cyclization of diepoxide 59.

70
Major

Minor

Figure 4: Important crosspeaks observed in the HMBC spectrum.

3.3. Optimization Using Group IV Lewis Acids for the Cyclization of 58

As discussed in Section 3.2, a 56\% yield and 1.9:1 regioselectivity of 68 and 69 was obtained when 58 was exposed to $10 \mathrm{~mol} \% \mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ and $20 \mathrm{~mol} \% \mathrm{AgClO}_{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at ambient temperature (Table 5). Attempts to optimize this reaction using solvents other than $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ led to a decrease in yield when BTF $(22 \%, 1.5: 1)$ or toluene $(46 \%, 1.7: 1)$ were used. We assumed that an improvement in the yield and regioselectivity could be achieved by subjecting 58 to the
less reactive hafnocene dichloride. Unfortunately, when $10 \mathrm{~mol} \% \mathrm{Cp}_{2} \mathrm{HfCl}_{2}$ and $20 \mathrm{~mol} \%$ AgClO_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature were used, a 20% yield of $\mathbf{6 8}$ and $\mathbf{6 9}$ was obtained as a 1:1 mixture of regioisomers (Table 6). Dihydropyrans 72 and 73 were isolated as the major byproduct in each cyclization with 72 being the major regioisomer and 73 the minor (vide infra).

3.3.1. Optimization of Lewis Acid

A variety of Lewis acids other than $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ or $\mathrm{Cp}_{2} \mathrm{HfCl}_{2}$ were explored to promote the cyclization of 58 to 68 and 69 in the hope of improving the yield and/or the regioselectivity. We observed that the reaction of 58 with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (entry 1, Table 7) at $-78{ }^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ promoted rapid formation of a 1.3:1 ratio of regioisomers in 44% overall yield. We also explored SnCl_{2} and EtAlCl_{2} as catalysts (entries 2 and 3, Table 7) which converted substrate 58 to $\mathbf{6 8}$ and 69 in a 23% and 22% yield, respectively, with little or no improvement in the regioselectivity. An additional Lewis acid tested for this substrate was ZnCl_{2}, which afforded 15% of $\mathbf{6 8}$ and $\mathbf{6 9}$ as a 1.1:1 mixture of regioisomers.

Unfortunately, attempts to optimize the cascade cyclization using conditions discussed in Table 6 and Table 7 did not provide a better than 56% yield and a $>1.9: 1$ regioisomeric mixture of the desired tetrahydrofurans.

Table 6: Optimization using $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ of $\mathrm{Cp}_{2} \mathrm{HfCl}_{2}$.

[^2]Table 7: Optimization attempts using non-group IV Lewis acids.

${ }^{a}$ Isolated yield. ${ }^{b}$ Ratio based on the integration of peaks at 5.30 (minor) and 5.17 (major) ppm in the crude ${ }^{1} \mathrm{H}$ NMR after acylation.

In all cases, the reaction mixtures contained dihydropyran byproducts 72and 73which could be isolated in $7-19 \%$ combined yield. These dihydropyrans were derivatized at the secondary alcohol position as the p-bromobenzoate ester 74 and 75 . The atom connectivity and relative configuration of 74, the major regioisomer, was determined by X-ray diffraction analysis (Scheme 10).

1) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 10 \mathrm{~min}$.
 78\%

74

75

Scheme 10: Preparation of dihydropyrans (74) and (75) and X-ray structure of the major regioisomer 74.

3.4. Optimization Using $\mathbf{C p}_{2} \mathbf{Z r C l}_{2} / \mathbf{A g C l O}_{4}$ for the Cyclization of 59

As discussed in Section 3.2, a modest 46\% yield and a 4.5:1 regioisomeric ratio was achieved when 59 was exposed to $10 \mathrm{~mol} \% \mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ and $20 \mathrm{~mol} \% \mathrm{AgClO}_{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at ambient temperature (Table 5). We explored the temperature dependence of the regioselectivity by subjecting substrate 59 to cyclizations conditions ranging from $-78^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ (Table 8). When
the cyclization reaction was carried out at $-78{ }^{\circ} \mathrm{C}$, no reaction was observed. It is noted in unpublished results from the Wipf group that $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ is relatively unreactive at temperatures below about $-40{ }^{\circ} \mathrm{C}$. At $-20^{\circ} \mathrm{C}$, a 35% yield and $1.4: 1$ regioisomeric ratio was observed, while reaction at $0^{\circ} \mathrm{C}$ produced the cyclized product in 51% yield as a 1.7:1 mixture of regioisomers. Improved regioselectivity (5.1:1) was observed when the reaction was carried out at $40{ }^{\circ} \mathrm{C}$; however a drop in the isolated yield was noted (34\%).

3.4.1 Optimization Using Other Lewis Acids

A variety of Lewis acids other than $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ were explored to promote the cyclization of 59 into 71 in the hope of improving the yield and/or regioselectivity. Exposure of 59 to $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ afforded a 68% yield of 70 and 71 in a 1.4:1 ratio of regioisomers. In addition, 11% of the undesired dihydropyran was formed. $\mathrm{Et}_{2} \mathrm{AlCl}$ and EtAlCl_{2} both resulted in poor isolated yield and regioisomeric ratio with substantial dihyropyran formation (Table 9).

As in the case of the 2-furyl-derived diepoxide, attempts to optimize the cyclization of 59 to 70 and 71 by changing temperatures from -78 to $40^{\circ} \mathrm{C}$ and using the Lewis acids detailed in Table 9 provided at best a 46% yield and a 4.5:1 mixture of regioisomers

Table 8: Optimization of tetrhydrofuran formation using $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2} / \mathrm{AgClO}_{4}$.

entry	Lewis acid ${ }^{\text {a }}$	solvent	temp (${ }^{\circ} \mathrm{C}$)	$\begin{gathered} \hline \text { yield (\%) } \\ 70+71^{b} \\ \hline \end{gathered}$	ratio of regioisomers ${ }^{\text {c }}$	$\begin{gathered} \text { yield (\%) } \\ \text { of } 76+77^{\text {b }} \end{gathered}$
1	$\begin{aligned} & \mathrm{Cp}_{2} \mathrm{ZrCl}_{2} / \\ & \mathrm{AgClO}_{4} \end{aligned}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-20	35	1.4:1	12
2	$\begin{aligned} & \mathrm{Cp}_{2} \mathrm{ZrCl}_{2} / \\ & \mathrm{AgClO}_{4} \end{aligned}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0	51	1.7:1	8
3	$\begin{aligned} & \mathrm{Cp}_{2} \mathrm{ZrCl}_{2} / \\ & \mathrm{AgClO}_{4} \end{aligned}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	rt	46	4.5:1	7
4	$\begin{aligned} & \mathrm{Cp}_{2} \mathrm{ZrCl}_{2} / \\ & \mathrm{AgClO}_{4} \\ & \hline \end{aligned}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	40	34	5.1:1	19

${ }^{\mathrm{a}} 10 \mathrm{~mol} \% \mathrm{Cp}_{2} \mathrm{ZrCl}_{2} / 20 \mathrm{~mol} / \mathrm{AgClO}_{4} .{ }^{\mathrm{b}}$ Combined isolated yield. ${ }^{\mathrm{c}}$ Ratio based on the integration of peaks at 5.39 (minor) and 5.24 (major) ppm in the crude ${ }^{1} \mathrm{H}$ NMR after acylation

Table 9: Optimization using other Lewis acids.

${ }^{\text {a }}$ Combined isolated yield. ${ }^{\text {b }}$ Ratio based on the integration of peaks at 5.39 (minor) and 5.24 (major) ppm in the crude ${ }^{1} \mathrm{H}$ NMR after acylation.

Scheme 11: Proposed mechanism of dihydropyran formation.

To account for the dihydropyan observed in each cyclization, an alternate mechanism was proposed (Scheme 11). E_{2} elimination of the hydrogen shown in Scheme 11 can occur affording allylic alcohol 79. Based on the Newman projection shown in Scheme 12, we propose that the elimination favors the cis-product due to the steric interactions in the conformation that generates the trans-product. At this point, attack onto the activated internal epoxide by the primary alcohol generates dihydropyran $\mathbf{8 0}$.

Scheme 12: Newman projections can account for observed cis-product.

4. SYNTHESIS OF TRIEPOXIDES

As discussed in the introductory section, it is believed that nature utilizes triepoxids to synthesize complex polyether natural products via a cascade cyclization pathway. Therefore, the next step in our methodology was to attempt to synthesize enantiomerically pure triepoxides and determine whether cationic zirconocene is a suitable Lewis acid to promote a polyepoxide cascade cyclization. We were interested in the possibility of testing our cationic zirconium methodology on triepoxides 84 and 85 (Figure 5).

Figure 5: Target enentiomerically pure triepoxides $\mathbf{8 4}$ and $\mathbf{8 5}$.

It should be noted that the only structural difference that exists between these substrates is the position of the methyl group. In compound $\mathbf{8 4}$, the methyl substituent is positioned at C 6 and in compound 85 it is at C 7 . This small difference should result in two different modes of cyclization when exposed to $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2} / \mathrm{AgClO}_{4}$. It is expected that substrate $\mathbf{8 4}$ will undergo an exo,exo-cyclization resulting in tethered tetrahydrofuran $\mathbf{8 6}$ while substrate $\mathbf{8 5}$ should undergo an endo,endo-cyclization to give 87, a fused tetrahydropyran (Figure 6).

Figure 6: Expected mode of cyclization for triepoxides $\mathbf{8 4}$ and $\mathbf{8 5}$.

4.1. Triepoxide Formation via a Key 1,2-Metallate Rearrangement

We devoted our initial efforts to the synthesis of triepoxide $\mathbf{8 4}$. Instead of synthesizing $\mathbf{8 4}$ in a lengthy linear fashion, our goal was a convergent approach between enol stannane $\mathbf{8 8}$ and homoallylic iodide 89 via a key 1,2-metallate rearrangement (vide infra). With 90 in hand, one could envision arriving at our desired enantiomerically pure triepoxide by Sharpless asymmetric epoxidation of the C3-4 alkene followed by dihydroxylation of the terminal alkene, mesylation and subsequent ring closure to give 92 . The internal epoxide could plausibly also be set by a Sharpless asymmetric dihydroxylation followed by mesylation and base induced ring closure (Scheme 13).

Scheme 13: Proposed route to triepoxide 84.

A 1,2-metallate rearrangement was selected as the key step in our efforts towards the synthesis of triepoxide $\mathbf{8 4}$ because it would generate the main scaffold of our desired triepoxide, including the methyl substituent at C6. Precedence for this transformation was found in the synthesis of manolide by Kocienski and coworkers. ${ }^{25}$ In this synthesis, a 1,2-metallate rearrangement was employed between enol stannane 95 and alkyl iodide 93 . The proposed mechanism of Kocienski's 1,2-metallate rearrangement is shown in Scheme 14.

Specifically, this sequence involved the addition of lithiated enol ether $\mathbf{9 6}$ to homocuprate
94. The resulting higher order cuprate 97 underwent a 1,2-metallate rearrangement with inversion of stereochemistry to give alkenylcuprate $\mathbf{9 8}$ which upon quenching with MeI gave $\mathbf{9 9}$ in 48\% overall yield.

98
MeI, HMPA

99

Scheme 14: Kocienski's 1,2-metallate rearrangement.

4.2. Synthesis of Enol Stannane and Homoallylic Iodide Compounds

4.2.1. Synthesis of Enol Stannane

For the preparation of enol stannane 88, commercially available 5 -hexen-1-ol was oxidized to 101 in quantitative yield. m-CPBA oxidation followed by NEt_{3} quench and TIPS-protection yielded lactone $\mathbf{1 0 2}$ in 65% yield over 3 steps. To complete the sequence, lactone $\mathbf{1 0 2}$ was converted to its labile triflate. Unfortunately, triflate formation was not trivial and required much optimization to produce a ratio of triflate to starting material that was suitable to undergo stannation (Scheme 15).

Scheme 15: Route to enol stannane 88.

As Table 10 shows, it was found that subjecting 102 to 2.5 eq. KHMDS followed by warming to $0^{\circ} \mathrm{C}$ for 30 min yieled a $8: 1$ ratio of triflate $\mathbf{1 0 3}$ to $\mathbf{1 0 2}$ With this triflate in hand, $\operatorname{Pd}(0)$-catalyzed stannation yielded $\mathbf{8 8}$ in 55\% yield over 2 steps.

Table 10: Optimization of triflate formation.

entry	Base	equiv.	temp. $\left({ }^{\circ} \mathrm{C}\right)$	ratio of $\mathbf{1 0 2 : 1 0 3}$
1	LiHMDS	1.8	-78	$5: 1$
2	NaHMDS	1.8	-78	$3: 1$
3	KHMDS	1.8	-78	$1: 1.6$
4	KHMDS	2.5	$-78 \rightarrow-50$	$1: 2$
5	KHMDS	2.5	$-78 \rightarrow-20$	$1: 2.3$
6	KHMDS	2.5	$-78 \rightarrow 0$	$1: 8$

4.2.2. Alternate Synthesis of Enol Stannane

To circumvent the problems arising from triflate formation discussed in Section 4.2.1, an alternate route to $\mathbf{8 8}$ was explored. Following a procedure from Ley and coworkers, ${ }^{26} \mathbf{8 8}$ was easily synthesized from commercially available glycidol. TIPS protection gave 104, and epoxide ring opening with but-3-enylmagnesium bromide and catalytic CuBr gave alkene 105 in high yield. Subsequent ozonolysis of 105 provided lactol 106 which was dehydrated via its corresponding mesylate to afford 107 in 70% yield over the two steps. Subjecting 107 to superbase conditions (n-BuLi-KOBut-TMEDA), followed by a $\mathrm{Me}_{3} \mathrm{SnCl}$ quench afforded $\mathbf{8 8}$ in 85\% yield (Scheme 16).

107

1) t-BuOK, n-BuLi,

Scheme 16: Alternate route to enol stannane 88.

4.2.3. Synthesis of Homoallylic Iodide

The synthesis of homoallylic iodide 89 started from commercially available 1,3-propanediol. Monoprotection with the THP group followed by Swern oxidation gave aldehyde 109 which underwent a Horner-Wadsworth-Emmons reaction to give ester 110. ${ }^{27}$ DIBAL-H reduction followed by TBDPS protection gave bis-protected 112. Selective THP deprotection gave 113 according to a known procedure. Quantitative conversion of $\mathbf{1 1 3}$ to the corresponding p toluenesulfonate ester, followed by a Finkelstein exchange provided the iodide 89 in 70% overall yield (Scheme 17).

Scheme 17: Synthesis of 89.

4.3. Initial 1,2-Metallate Rearrangement

With compounds $\mathbf{8 8}$ and 89 in hand, a 1,2-metallate arrangement was attempted following Kocienski's published protocol (Scheme 18). Unfortunately, when this reaction was performed no desired diene $\mathbf{9 0}$ was isolated. The only observable product was hydrolyzed $\mathbf{8 9}$.

Scheme 18: Initial 1,2-metallate rearrangement.

Kocienski used a similar enol stannane in his rearrangement; therefore, the failure of our reaction was believed to lie in our alkyl iodide species. Kocienski used a simple MOM-proteced alkyl iodide, while we were using a more complex homoallylic iodide with a bulky TBDPS-protecting group. To test this hypothesis, 1,2-metallate rearrangement model studies were performed using simpler iodide compounds and/or less bulky protecting groups.

4.4. 1,2-Metallate Rearrangment Using Iodohexene and Iodo-3-hexene

Under similar 1,2-metallate rearrangement reaction conditions as discussed in Section 4.3, a 65\% yield of $\mathbf{1 1 4}$ was obtained with iodohexane and a 34% yield of $\mathbf{1 1 5}$ was obtained with iodo-3hexene (Table 11).

Table 11: 1,2-metallate rearrangement using iodohexene and iodo-3-hexene.

4.5. Synthesis of THP-Protected Iodo Alkene/Alkyne

After performing the 1,2-metallate rearrangement on simpler iodides, we next tested the reaction using the less sterically encumbered THP protecting group. The synthesis of $\mathbf{1 1 8}$ and 120 started from commercially available propargyl aclohol which was protected with a THP group to give 116. Deprotonation and subsequent reaction with oxirane gave 117. Tosylation followed by nucleophilic displacement gave $\mathbf{1 1 8}$ in good yield. ${ }^{28}$ Alternatively, $\mathbf{1 1 7}$ was reduced with LiAlH_{4} to 119 which was converted to 120 via an $\mathrm{S}_{\mathrm{N}} 2$-displacement (Scheme 19). ${ }^{29}$

1) TsCl , Pyrid.

Scheme 19: Synthesis of 118 and 120.

4.5.1. 1,2-Metallate Rearrangement Using THP-Protected Iodo Alkene/Alkyne

Unfortunately, a 1,2-metallate rearrangement between enol stanne 88 and the THP-protected iodide species 118 and 120 synthesized in Section 4.5 resulted in no observable conversion (Scheme 20).

Scheme 20: 1,2-metallate rearrangement using compounds 118 and 120.

5. CONCLUSIONS

After screening numerous electronically different enantiomerically pure diepoxides, the 2-furyl 58 and 2-benzofuryl 59 derived esters afforded the most promising results when exposed to 10 $\mathrm{mol} \% \mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ and $20 \mathrm{~mol} \% \mathrm{AgClO}_{4}$. After optimization attempts, species 58 yielded 56% of tetrahydrofuran $\mathbf{6 8}$ and $\mathbf{6 9}$ in a 1.9:1 ratio of regioisomers while compound 59 resulted in a 46% yield of $\mathbf{7 0}$ and $\mathbf{7 1}$ as a 4.5:1 mixture of regioisomers.

In spite of considerable efforts, the key 1,2-metallate rearrangement has yet to be performed successfully for the preparation of enantiomerically pure triepoxides. In model studies, this reaction progressed well between simple iodides and enol stannane 88, but was unsuccessful when applied to slightly more complex alkyl iodides.

6. EXPERIMENTAL

6.1. General

All moisture sensitive reactions were performed under an atmosphere of N_{2} and all glassware was dried in an oven at $140{ }^{\circ} \mathrm{C}$ or flame dried under N_{2} prior to use. THF and $\mathrm{Et}_{2} \mathrm{O}$ were dried by distillation over Na /benzophenone under a nitrogen atmosphere. Dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was purified by filtration through activated alumina. Unless otherwise stated, solvents or reagents were used without further purification. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 F-254 plates (particle size $0.040-0.055 \mathrm{~mm}, 230-400 \mathrm{mesh}$) and staining was accomplished with anisaldehyde or with a 254 nm UV lamp. NMR spectra were recorded at 300 $\mathrm{MHz} / 75 \mathrm{MHz}\left({ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}\right.$ NMR $)$ in CDCl_{3} using a BRUKER AVANCE 300 MHz spectrometer at $21{ }^{\circ} \mathrm{C}$. Chemical shifts (δ) are reported in parts per million and the residual CHCl_{3} peak was used as an internal standard. Data are reported as follows: chemical shift, multiplicity, integration and coupling constant. IR spectra were obtained on a Nicolet AVATAR 360 FT-IR E.S.P. spectrometer. Mass spectra were obtained on a VG-70-70 HF in the electron ionization mode.

6.2. Experimental Procedures

(E)-(Carboxyvinyl)trimethylammonium betaine (26). ${ }^{22}$ This compound was prepared by a known procedure and its ${ }^{1} \mathrm{H}$ NMR was identical with the reported data: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, \mathrm{DSS}\right.$ ref) $6.94(\mathrm{~d}, 1 \mathrm{H}, J=13.9 \mathrm{~Hz}), 6.44(\mathrm{~d}, 1 \mathrm{H}, J=13.9 \mathrm{~Hz}), 3.36(\mathrm{~s}, 9 \mathrm{H})$.

3-(2-Methylallyloxy)-acrylic acid (27). To a suspension of $6.84 \mathrm{~g}(0.171 \mathrm{~mol})$ of $60 \% \mathrm{NaH}$ in mineral oil in 90 mL of anhydrous THF was added a solution of $12.1 \mathrm{~mL}(0.143 \mathrm{~mol})$ of β methallyl alcohol in 180 mL of anhydrous THF via a dropping funnel over a period of 30 min . The reaction mixture was stirred for an additional 30 min at which point $25.0 \mathrm{~g}(0.194 \mathrm{~mol})$ of 26 was added. The reaction mixture was heated to a gentle reflux for 15 h , cooled and slowly quenched with 600 mL of water and 220 mL of brine. The aqueous layer was washed with ether (x 3), and then acidified to pH 1.0 with approximately 21 mL of 6 N HCl . The aqueous layer was extracted with ether (x 3), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to afford $18.0 \mathrm{~g}(0.127 \mathrm{~mol}$, 62%) of 27 a colorless solid which was used without further purification in the next step: ${ }^{1} \mathrm{H}$ NMR $\delta 9.53(\mathrm{bs}, 1 \mathrm{H}), 7.67(\mathrm{~d}, 1 \mathrm{H}, J=12.5 \mathrm{~Hz}), 5.25(\mathrm{~d}, 1 \mathrm{H}, J=12.5 \mathrm{~Hz}), 5.03(\mathrm{~d}, 2 \mathrm{H}, J=6.0$ $\mathrm{Hz}), 4.33(\mathrm{~s}, 2 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 173.4,163.9,139.1,113.9,96.3,74.8,18.8 ; \mathrm{MS}$
(EI) $m / z 142\left(\mathrm{M}^{+}, 9\right), 124(30), 96(58), 56(100)$; HRMS (EI) m / z calcd for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{3}$ 142.0616, found 142.0622 .

4-Methylpent-4-enal (28). To $18.0 \mathrm{~g}(0.127 \mathrm{~mol})$ of crude 27 was added $2.0 \mathrm{mg}(0.018 \mathrm{mmol})$ of neat hydroxyquinone, and the mixture was distilled under vacuum ($120-122{ }^{\circ} \mathrm{C} / 0.5 \mathrm{mmHg}$). The bath temperature was slowly increased to $200^{\circ} \mathrm{C}$ and kept at $200^{\circ} \mathrm{C}$ for 1 h . The product was collected in a receiver flask cooled with a dry ice-acetone bath to give $10.4 \mathrm{~g}(0.106 \mathrm{~mol}$, 85%) of 28 as a colorless liquid which was used without further purification.

6-Methylhepta-2,6-dienoic acid ethyl ester (29). To a $0{ }^{\circ} \mathrm{C}$ solution of $2.81 \mathrm{~g}(0.177 \mathrm{~mol})$ of $95 \% \mathrm{NaH}$ in 137 mL of anhydrous THF was added $23.3 \mathrm{~mL}(0.177 \mathrm{~mol})$ of triethylphosphonoacetate. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min and treated dropwise with $10.4 \mathrm{~g}(0.106 \mathrm{~mol})$ of $\mathbf{2 8}$ over a period of 20 min . Stirring was continued at $0{ }^{\circ} \mathrm{C}$ for 1.5 h , before the mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$. The aqueous phase was extracted with ether (x 3), dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated and purified by chromatography on $\mathrm{SiO}_{2}(40: 1$ hexanes/EtOAc) to give 11.3 g ($0.0673 \mathrm{~mol}, 63 \%$) of 29 as a light yellow liquid: IR (neat) 2980, 2936, 1722, 1654, 1314, 1267, 1153, $1043 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 6.96(\mathrm{dt}, 1 \mathrm{H}, J=15.6,6.7 \mathrm{~Hz}), 5.84$ $(\mathrm{d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.73(\mathrm{~d}, 2 \mathrm{H}, J=15.9 \mathrm{~Hz}), 4.19(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 2.39-2.31(\mathrm{~m}, 2 \mathrm{H})$, 2.19-2.14 (m, 2 H$), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 166.1,148.0$, 143.7,
$121.2,110.4,59.7,35.6,29.9,22.0,13.9$; MS (EI) $m / z 168\left(\mathrm{M}^{+}, 32\right), 122(21), 95(100), 94(74)$, 55 (83); HRMS (EI) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}$ 168.1150, found 168.1148 .

6-Methylhepta-2,6-dien-1-ol (30). To a solution of 150 mL of DIBAL (1.0 M in hexanes, 150.0 $\mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$ was added a solution of $11.3 \mathrm{~g}(67.4 \mathrm{mmol})$ of 29 in 87.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction mixture was warmed to $-55^{\circ} \mathrm{C}$ for 30 min , then quenched at $-78{ }^{\circ} \mathrm{C}$ using a 1 M aqueous solution of sodium potassium tartrate. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{x} 3)$, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated and purified by chromatography on $\mathrm{SiO}_{2}(8: 1$ hexanes/EtOAc) to give $6.65 \mathrm{~g}(52.8 \mathrm{mmol}, 78 \%)$ of $\mathbf{3 0}$ as a light yellow oil: IR (neat) $3324,3075,2932,2853,1649$, 1446, 1374, 1007, $887 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 5.77-5.60(\mathrm{~m}, 2 \mathrm{H}), 4.73(\mathrm{bs}, 1 \mathrm{H}), 4.69(\mathrm{bs}, 1 \mathrm{H}), 4.10$ $(\mathrm{d}, 2 \mathrm{H}, J=3.8 \mathrm{~Hz}), 2.25-2.05(\mathrm{~m}, 4 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 144.9$, 131.9, 129.1, 109.9, 63.0, 37.0, 30.1, 22.2; MS (EI) m/z 108 ([M-H2O] ${ }^{+}$, 45), 95 (75), 93 (100), 55 (95); HRMS (EI) m/z calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right)$ 108.0939, found 108.0936.

(2R,3R)-2,3-Epoxy-6-methylhept-6-en-1-ol (31). ${ }^{24}$ This compound was prepared in 65% yield by a known procedure and its IR and ${ }^{1} \mathrm{H}$ NMR spectra were identical to the reported data: $[\alpha]_{\mathrm{D}}$ +22.4 (c 1.00, CHCl_{3}); IR (neat) $3419,2979,2935,2863,1650,1450,1376,1092,1028,886 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 4.76(\mathrm{bs}, 1 \mathrm{H}), 4.72(\mathrm{bs}, 1 \mathrm{H}), 3.90(\mathrm{ddd}, 1 \mathrm{H}, J=12.6,5.6,2.3 \mathrm{~Hz}), 3.61$ (ddd, 1 H , $J=12.6,6.6,4.5 \mathrm{~Hz}), 2.99-2.94(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H})$.

((2S,3S)-3-(3-Methylbut-3-enyl)ethyl)oxiran-2-yl)methyl acetate (33). A $0^{\circ} \mathrm{C}$ solution of 200 $\mathrm{mg}(1.41 \mathrm{mmol})$ of 31 in 20 mL of anhydrous pyridine was treated dropwise with 1.64 mL (14.1 mmol) of acetic anhydride. The reaction mixture was stirred at ambient temperature for 3 h , quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{x} 3)$. The combined organic extracts were washed with saturated aqueous CuSO_{4} (x 3), dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated and purified on $\mathrm{SiO}_{2}(4: 1$ hexanes $/ \mathrm{EtOAc})$ to afford $236 \mathrm{mg}(1.28 \mathrm{mmol}$, 92%) of 33 as a colorless oil: $[\alpha]_{\mathrm{D}}+34.9$ (c 1.05, CHCl_{3}); IR (neat) $3075,2940,1744,1650$, 1448, 1368, 1232, 1035, 973, $889 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 4.76$ (bs, 1 H$), 4.72$ (bs, 1 H), 4.36 (dd, $1 \mathrm{H}, \mathrm{J}$ $=12.2,3.2 \mathrm{~Hz}), 3.91(\mathrm{dd}, 1 \mathrm{H}, J=12.2,6.3 \mathrm{~Hz}), 3.01-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{dt}, 1 \mathrm{H}, J=5.6,2.1$ $\mathrm{Hz})$, 2.19-2.10 (m, 2 H$), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.76-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{bs}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR δ 170.0, 143.9, 110.1, 64.3, 55.6, 54.8, 33.3, 29.1, 21.8, 20.1; MS (EI) m/z $184\left(\mathrm{M}^{+}, 9\right), 166(33), 115$ (100), 81 (64), 67 (81), 55 (60); HRMS (EI) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3}$ 185.1177, found 185.1169 .

((2S,3S)-3-(3-Methylbut-3-enyl)ethyl)oxiran-2-yl)methyl benzoate (34). According to the procedure used for $33,205 \mathrm{mg}(0.833 \mathrm{mmol}, 60 \%)$ of 34 was obtained as a colorless oil: $[\alpha]_{\mathrm{D}}$ +26.5 (с 1.26, CHCl_{3}); IR (neat) 2939, 1723, 1649, 1601, 1451, 1375, 1109, 1070, 1026, 889, $712 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 8.07(\mathrm{~d}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 7.58(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.46(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz})$, $4.75(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 4.66(\mathrm{dd}, 1 \mathrm{H}, J=12.1,3.2 \mathrm{~Hz}), 4.24(\mathrm{dd}, 1 \mathrm{H}, J=12.1,6.4 \mathrm{~Hz})$, $3.16-3.14(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.96(\mathrm{dt}, 1 \mathrm{H}, J=5.6,2.1 \mathrm{~Hz}), 2.19(\mathrm{bt}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 1.80-1.72(\mathrm{~m}$,
$2 \mathrm{H}), 1.75$ (bs, 3 H); ${ }^{13} \mathrm{C}$ NMR $\delta 166.0,144.2,132.9,129.5,128.2,110.5,65.0,56.5,55.3,33.7$, 29.4, 22.2; MS (EI) $\mathrm{m} / \mathrm{z} 246\left(\mathrm{M}^{+}, 6\right), 178$ (58), 147 (66), 111 (83), 96 (91), 56 (100); HRMS (EI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}$ 246.1253, found 246.1251.

((2S,3S)-3-(3-Methylbut-3-enyl)ethyl)oxiran-2-yl)methyl
2,4-dimethoxybenzoate
(35).

According to the procedure used for $\mathbf{3 3}, 118 \mathrm{mg}(0.386 \mathrm{mmol}, 84 \%)$ of $\mathbf{3 5}$ was obtained as a light yellow oil: $[\alpha]_{\mathrm{D}}+28.8$ (c 1.3, CHCl_{3}); IR (neat) $3511,2940,1724,1649,1609,1505,1463$, 1376, 1250, 1212, 1164, 1078, 1031, 889, 836, 769, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.89(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.8$ $\mathrm{Hz}), 6.52-6.48(\mathrm{~m}, 2 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{dd}, 1 \mathrm{H}, J=12.3,3.3 \mathrm{~Hz}), 4.13(\mathrm{dd}, 1$ $\mathrm{H}, J=12.3,6.0 \mathrm{~Hz}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.13-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{dt}, 1 \mathrm{H}, J=5.7,2.1$ $\mathrm{Hz}), 2.20-2.15(\mathrm{~m}, 2 \mathrm{H})$ 1.76-1.71(m, 2 H$), 1.74(\mathrm{bs}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 164.7,164.2,161.3$, 144.1, 133.7, 111.3, 110.3, 104.3, 98.6, 64.1, 55.9, 55.6, 55.3, 55.1, 33.5, 29.3, 22.0; MS (EI) m/z $329\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right), 307$ (27), 165 (25); HRMS (EI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{5} 329.1365$, found 329.1364.

((2S,3S)-3-(3-methylbut-3-enyl)ethyl)oxiran-2-yl)methyl 3,4-dimethoxybenzoate (36).

According to the procedure used for 33, $90.0 \mathrm{mg}(0.294 \mathrm{mmol}, 42 \%)$ of 36 was obtained as a light yellow oil: $[\alpha]_{\mathrm{D}}+24.3$ (с $0.90, \mathrm{CHCl}_{3}$); IR (neat) 2938, 1712, 1649, 1600, 1514, 1417,

1270, 1176, 1134, 1025, 887, 823, 764, $729 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.72(\mathrm{dd}, 1 \mathrm{H}, J=8.5,1.9 \mathrm{~Hz})$, $7.56(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}), 6.90(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 4.76(\mathrm{bs}, 1 \mathrm{H}), 4.73(\mathrm{bs}, 1 \mathrm{H}), 4.61(\mathrm{dd}, 1 \mathrm{H}, J$ $=12.2,3.2 \mathrm{~Hz}), 4.14(\mathrm{dd}, 1 \mathrm{H}, J=12.2,6.3 \mathrm{~Hz}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.15-3.11(\mathrm{~m}, 1 \mathrm{H})$, $2.96(\mathrm{dt}, 1 \mathrm{H}, J=5.7,2.1 \mathrm{~Hz}), 2.20-2.16(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{bs}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR δ $165.8,152.9,148.4,144.1,123.6,121.9,111.7,110.4,109.9,64.9,55.9,55.7,55.3,33.6,29.3$, 22.1; MS (EI) m/z 329 ([M+Na] ${ }^{+}$, 100), 307 (32), 165 (30); HRMS (EI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{5}$ 329.1365, found 329.1361.

((2S,3S)-3-(3-Methylbut-3-enyl)ethyl)oxiran-2-yl)methyl 3,4,5-trimethoxybenzoate (37). According to the procedure used for $\mathbf{3 3}, 540 \mathrm{mg}(1.61 \mathrm{mmol}, 70 \%)$ of 37 was obtained as a colorless oil: $[\alpha]_{\mathrm{D}}+21.3$ (с 1.0, CHCl_{3}); IR (neat) 2941, 1716, 1649, 1589, 1462, 1415, 1336, 1221, 1176, 1004, 888, 763, $732 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR} \delta 7.32(\mathrm{~s}, 2 \mathrm{H}), 4.76(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 4.63$ (dd, $1 \mathrm{H}, J=12.2,2.9 \mathrm{~Hz}), 4.13(\mathrm{dd}, 1 \mathrm{H}, J=12.1,6.3 \mathrm{~Hz}), 3.91(\mathrm{~s}, 9 \mathrm{H}), 3.14-3.11(\mathrm{~m}, 1 \mathrm{H})$, 2.96-2.93 (m, 1 H$), 2.21-2.16(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{bs}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 165.5, $152.6,144.0,142.1,124.4,110.4,106.7,65.1,60.5,55.9,55.8,55.2,33.5,29.3,22.0 ;$ MS (EI) $m / z 336\left(\mathrm{M}^{+}, 14\right), 267(24), 212(25), 195(100), 109(12) ;$ HRMS (EI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{6}$ 336.1572, found 336.1580.

((2S,3S)-3-(3-Methylbut-3-enyl)ethyl)oxiran-2-yl)methyl 4-methoxybenzoate
(38).

According to the procedure used for $\mathbf{3 3}, 584 \mathrm{mg}(2.11 \mathrm{mmol}, 100 \%)$ of $\mathbf{3 8}$ was obtained as a light yellow oil: $[\alpha]_{\mathrm{D}}+21.5$ (c 1.2, CHCl_{3}); IR (neat) 3076, 2938, 1715, 1649, 1580, 1444, 1376, $1257,1168,1102,1029,889,770,728,696,614 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 8.02(\mathrm{~d}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 6.92$ (d, 2 H, J = 7.0 Hz), $4.76(\mathrm{bs}, 1 \mathrm{H}), 4.73(\mathrm{bs}, 1 \mathrm{H}), 4.58(\mathrm{dd}, 1 \mathrm{H}, J=12.1,3.2 \mathrm{~Hz}), 4.14(\mathrm{dd}, 1$ $\mathrm{H}, J=12.4,6.4 \mathrm{~Hz}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.14-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{dt}, 1 \mathrm{H}, J=5.6,2.2 \mathrm{~Hz}) 2.21-2.16$ (m, 2 H$), 1.79-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{bs}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 165.7,163.3,144.2,131.6,121.9$, $113.4,110.4,64.7,55.9,55.4,55.2,33.6,29.4,22.1 ; \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z} 276\left(\mathrm{M}^{+}, 19\right), 258(25), 207$ (45), 152 (24), 135 (100), 92 (24); HRMS (EI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{4}$ 276.1361, found 276.1348

((2S,3S)-3-(3-Methylbut-3-enyl)ethyl)oxiran-2-yl)methyl 2-hydroxy-2-phenylacetate (39). According to the procedure used for $33,470 \mathrm{mg}(1.70 \mathrm{mmol}, 55 \%)$ of 39 was obtained as a light yellow oil: $[\alpha]_{\mathrm{D}}+24.7$ (c 1.0, CHCl_{3}); IR (neat) 3466, 3070, 2938, 1743, 1649, 1602, 1494, 1375, 1182, 1067, 1028, 969, 888, 732, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.45-7.31(\mathrm{~m}, 5 \mathrm{H}), 5.24-5.20(\mathrm{~m}, 1$ H), $4.74(\mathrm{bs}, 1 \mathrm{H}), 4.67(\mathrm{bs}, 1 \mathrm{H}), 4.45-4.38(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{dd}, 1 \mathrm{H}, J=12.1,5.9 \mathrm{~Hz}), 3.40(\mathrm{bs}, 1$ H), 2.96-2.87 (m, 1 H), 2.75-2.70 (m, 1 H), 2.11-2.05 (m, 2 H), 1.72 (s, $3 H), 1.68-1.61$ (m, $2 H$);
${ }^{13} \mathrm{C}$ NMR $\delta 173.1,144.1,137.9,128.4,126.4,110.4,72.7,65.6,65.3,55.8,55.7,54.8,54.7$, 33.5, 29.2, 22.1; MS (EI) $m / z 277$ ([M+1] ${ }^{+}, 0.1$), 142 (15), 107 (100), 79 (63); HRMS (EI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{4}$ 276.1362, found 276.1344.

((2S,3S)-3-(3-methylbut-3-enyl)ethyl)oxiran-2-yl)methyl furan-2-carboxylate
According to the procedure used for $\mathbf{3 3}, 564 \mathrm{mg}(2.39 \mathrm{mmol}, 95 \%)$ of 40 was obtained as a colorless oil: $[\alpha]_{\mathrm{D}}+13.0\left(c 1.1, \mathrm{CHCl}_{3}\right)$; IR (neat) $2940,1728,1650,1580,1474,1397,1294$, 1231, 1180, 1120, 1015, 963, 885, $763 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.60(\mathrm{~d}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}), 7.22(\mathrm{~d}, 1 \mathrm{H}, J$ $=2.9 \mathrm{~Hz}), 6.53-6.52(\mathrm{~m}, 1 \mathrm{H}), 4.75(\mathrm{bs}, 1 \mathrm{H}), 4.71(\mathrm{bs}, 1 \mathrm{H}), 4.57(\mathrm{dd}, 1 \mathrm{H}, J=12.2,3.3 \mathrm{~Hz})$, $4.15(\mathrm{dd}, 1 \mathrm{H}, J=18.3,6.3 \mathrm{~Hz}), 3.12-3.08(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{dt}, 1 \mathrm{H}, J=5.6,1.9 \mathrm{~Hz}), 2.20-2.15(\mathrm{~m}$, $2 \mathrm{H}), 1.79-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 157.8,146.2,143.8,118.0,117.9$, 111.6, $110.2,64.6,55.7,54.8,33.3,29.1,21.9$; MS (EI) $\mathrm{m} / \mathrm{z} 236\left(\mathrm{M}^{+}, 14\right), 218$ (36), 180 (66), 95 (100); HRMS (EI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4} 236.1095$ found 236.2691.

((2S,3S)-3-(3-Methylbut-3-enyl)ethyl)oxiran-2-yl)methyl benzofuran-2-carboxylate (41). To a solution of $1.00 \mathrm{~g}(7.04 \mathrm{mmol})$ of 31 in 23.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $3.42 \mathrm{~g}(21.1 \mathrm{mmol})$ of benzo[b]furan-2-carboxylic acid, $2.18 \mathrm{~g}(10.6 \mathrm{mmol})$ of DCC and $86.0 \mathrm{mg}(0.704 \mathrm{mmol})$ of DMAP. The reaction mixture was stirred at rt for 3 h , quenched with a saturated solution of
$\mathrm{NH}_{4} \mathrm{Cl}$ and filtered through a plug of celite. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{x} 3)$, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated and purified by chromotography on $\mathrm{SiO}_{2}(10: 1$ hexanes/EtOAc) to give $1.90 \mathrm{~g}(6.64 \mathrm{mmol}, 94 \%)$ of 41 as a colorless oil: $[\alpha]_{\mathrm{D}}+26.5\left(c 1.26, \mathrm{CHCl}_{3}\right)$; IR (neat) 3071, 2938, 1793, 1731, 1650, 1614, 1593, 1446, 970, 885, $749 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.70$ (d, $1 \mathrm{H}, J$ $=8.0 \mathrm{~Hz}), 7.61-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{app} . \mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.35-7.26(\mathrm{~m}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 1 \mathrm{H})$, $4.73(\mathrm{~s}, 1 \mathrm{H}), 4.66(\mathrm{dd}, 1 \mathrm{H}, J=12.1,3.2 \mathrm{~Hz}), 4.24(\mathrm{dd}, 1 \mathrm{H}, J=12.1,6.4 \mathrm{~Hz}), 3.16-3.14(\mathrm{~m}, 1$ H), 3.00-2.96(m, 1 H$), 2.19(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}), 1.80-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ $158.8,155.4,144.6,144.0,127.5,126.5,123.5,122.6,114.1,111.9,110.4,65.2,55.9,54.8,33.5$, 29.2, 22.0; MS (EI) m/z $286\left(\mathrm{M}^{+}, 12\right), 217$ (65), 162 (42), 145 (100), 89 (41); HRMS (EI) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4}$ 286.1205, found 286.1204.

((2S,3S)-3-(2-(2-Methyloxirane-2-yl)ethyl)oxiran-2-yl)methyl acetate (42). To a solution of $1.00 \mathrm{~g}(5.41 \mathrm{mmol})$ of 33 in 20.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $1.96 \mathrm{~g}(7.97 \mathrm{mmol})$ of $70 \% \mathrm{~m}$-CPBA at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at rt for 3 h , and quenched with an aqueous solution of $20 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (x 3), saturated aqueous NaHCO_{3} (x 3), dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated and purified by chromatography on SiO_{2} (7:3 hexanes/EtOAc) to afford $837 \mathrm{mg}(4,17 \mathrm{mmol}, 77 \%)$ of 42 as a colorless oily mixture of diastereomers (1:1): IR (neat) 2950, 1450, 1389, 1232, 1147, 972, 804, $729 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR δ 4.39-4.33 (m, 1 H), 3.93 (dd, $1 \mathrm{H}, J=12.2,6.2 \mathrm{~Hz}$), 3.00-2.97 (m, 1 H$)$, 2.91-2.88 (m, 1 H), 2.64-2.59 (m, 2 H$), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.79-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.34,1.33(2 \mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 170.1$,
$64.1,55.8,55.7,55.5,54.9,54.8,53.2,52.9,32.5,32.0,26.9,26.7,20.6,20.3$; MS (EI) $\mathrm{m} / \mathrm{z} 200$ $\left(\mathrm{M}^{+}, 9\right), 152(34), 83(53), 69(100), 56(89)$; HRMS (EI) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{4} 200.1049$, found 200.1058 .

((2S,3S)-3-(2-(2-Methyloxirane-2-yl)ethyl)oxiran-2-yl)methyl benzoate (43). According to the procedure used for $\mathbf{4 2}, 170 \mathrm{mg}(0.699 \mathrm{mmol}, 78 \%)$ of 43 was obtained as a colorless oily mixture of diastereomers (1:1): IR (neat) 2950, 1720, 1601, 1584, 1390, 1274, 1070, 897, 805, $713 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 8.00(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.58(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.45(\mathrm{t}, 2 \mathrm{H}, J=7.8$ Hz)4.65-4.58 (m, 1 H$), 4.19$ (dd, $1 \mathrm{H}, J=12.2,6.1 \mathrm{~Hz}$), 3.16-3.11 (m, 1 H$), 2.98-2.96(\mathrm{~m}, 1 \mathrm{H})$, 2.65-2.59 (m, 2 H$), 1.81-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.34,1.33(2 \mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 165.9,132.9$, 129.4, $128.2,64.8,56.0,55.9,55.8,55.2,55.1,53.6,53.2,32.6,32.2,27.1,26.9,20.7,20.5$; MS (EI) $m / z 262\left(\mathrm{M}^{+}, 12\right), 122(25), 105$ (75); HRMS (EI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4}$ 262.1205, found 262.1206.

((2S,3S)-3-(2-(2-Methyloxirane-2-yl)ethyl)oxiran-2-yl)methyl 2,4-dimethoxybenzoate (44). According to the procedure used for $42,57.0 \mathrm{mg}(0.177 \mathrm{mmol}, 46 \%)$ of 44 was obtained as a colorless oily mixture of diastereomers (1:1): IR (neat) 2937, 1712, 1599, 1514, 1452, 1417, 1346, 1271, 1221, 1176, 1134, 1107, 1023, 877, 764, $727 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.89(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.1$
$\mathrm{Hz}), 6.52-6.48(\mathrm{~m}, 2 \mathrm{H}), 4.53(\mathrm{dt}, 1 \mathrm{H}, J=12.3,3.7 \mathrm{~Hz}), 4.15(\mathrm{dd}, 1 \mathrm{H}, J=12.3,5.8 \mathrm{~Hz}), 3.89(\mathrm{~s}$, $3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.13-3.08(\mathrm{~m}, 1 \mathrm{H}), 2.98-2.95(\mathrm{~m}, 1 \mathrm{H})$, 2.65-2.58(m, 2 H$)$ 1.80-1.62 (m, 4 H), 1.33, $1.32(2 \mathrm{~s}, 3 \mathrm{H},) ;{ }^{13} \mathrm{C}$ NMR $\delta 165.1,164.6,161.7,134.1,111.6,104.7,98.9,64.3,56.3$, $56.2,55.9,55.7,55.6,55.0,53.9,53.6,33.0,32.6,27.5,27.3,21.1,20.8 ; \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z} 322\left(\mathrm{M}^{+}\right.$, 10), 182 (14), 165 (100); HRMS (EI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{6} 322.1416$, found 322.1426 .

((2S,3S)-3-(2-(2-Methyloxirane-2-yl)ethyl)oxiran-2-yl)methyl 3,4-dimethoxybenzoate (45). According to the procedure used for $42,48.4 \mathrm{mg}(0.150 \mathrm{mmol}, 52 \%)$ of 45 was obtained as a colorless oily mixture of diastereomers (1:1): IR (neat) 2944, 1723, 1608, 1505, 1463, 1390, 1249, 1164, 1080, 1029, 896, 836, 770, $699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.71$ (dd, $1 \mathrm{H}, J=8.4,1.9 \mathrm{~Hz}$), 7.55 $(\mathrm{d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}), 6.89(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 4.63-4.54(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{dd}, 1 \mathrm{H}, J=12.2,6.3$ $\mathrm{Hz}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.15-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.98-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.57(\mathrm{~m}, 2 \mathrm{H})$, 1.79-1.61 (m, 4 H$), 1.33,1.32(2 \mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 165.9,153.1,148.5,123.7,122.0,111.9$, $110.1,64.8,56.1,55.9,55.6,53.8,53.4,32.8,32.4,27.3,27.0,20.9,20.6$; HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$ 345.1314, found 345.1306.

((2S,3S)-3-(2-(2-Methyloxirane-2-yl)ethyl)oxiran-2-yl)methyl 3,4,5 trimethoxybenzoate (46). According to the procedure used for $\mathbf{4 2}, 453 \mathrm{mg}(1.29 \mathrm{mmol}, 80 \%)$ of 46 was obtained as a colorless oily mixture of diastereomers (1:1): IR (neat) 2942, 1716, 1589, 1415, 1336, 1220, 1128, 1002, 864, 764, 732, $675 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.32(\mathrm{~s}, 2 \mathrm{H}), 4.63(\mathrm{dt}, 1 \mathrm{H}, J=12.2,3.3 \mathrm{~Hz}$), $4.15(\mathrm{dd}, 1 \mathrm{H}, J=12.3,6.5 \mathrm{~Hz}), 3.91(\mathrm{~s}, 9 \mathrm{H}), 3.15-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.96-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.58$ (m, 2 H$), 1.80-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.33,1.32(2 \mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 165.8,152.8,142.2,124.5,106.8$, $65.2,60.7,56.1,55.4,53.7,53.3,32.7,32.3,27.2,26.9,20.9,20.6$; MS (EI) $\mathrm{m} / \mathrm{z} 352\left(\mathrm{M}^{+}, 37\right)$, 212 (40), 195 (100), 109 (7); HRMS (EI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{7} 352.1522$, found 352.1509.

((2S,3S)-3-(2-(2-Methyloxirane-2-yl)ethyl)oxiran-2-yl)methyl 4-methoxybenzoate
(47).

According to the procedure used for $\mathbf{4 2}, 270 \mathrm{mg}(0.921 \mathrm{mmol}, 44 \%)$ of 47 was obtained as a light yellow oily mixture of diastereomers (1:1): IR (neat) 2936, 1716, 1606, 1580, 1455, 1389, $1316,1258,1169,1028,897,849,770,735,697,614 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 8.02(\mathrm{~d}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz})$, $6.92(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}), 4.61-4.54(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{ddd}, 1 \mathrm{H}, J=11.4,6.2,0.8 \mathrm{~Hz}), 3.86(\mathrm{~s}, 3 \mathrm{H})$, 3.14-3.08 (m, 1 H$), 2.98-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.94-2.58(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.63(\mathrm{~m}, 4 \mathrm{H}), 1.33,1.32(2 \mathrm{~s}, 3$ H) ; ${ }^{13} \mathrm{C}$ NMR $\delta 165.3,163.1,131.2,121.6,113.2,64.3,55.7,55.6,55.6,55.5,55.1,55.0,54.9$,
$53.2,52.9,32.4,32.0,26.9,26.7,20.5,20.3 ;$ MS (EI) $m / z 292\left(\mathrm{M}^{+}, 6\right), 152$ (37), 135 (100), 92 (17), 77 (23), HRMS (EI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{5} 292.1311$, found 292.1318.

((2S,3S)-3-(2-(2-Methyloxirane-2-yl)ethyl)oxiran-2-yl)methyl
(48). According to the procedure used for $\mathbf{4 2}, 282 \mathrm{mg}(0.966 \mathrm{mmol}, 57 \%)$ of 48 was obtained as a colorless oily mixture of diastereomers (1:1): IR (neat) 3454, 3033, 2930, 1743, 1494, 1453, 1391, 1181, 1096, 1067, 1028, 984, 898, 787, 732, $699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.45-7.32(\mathrm{~m}, 5 \mathrm{H}), 5.27$ $(\mathrm{d}, 1 \mathrm{H}, J=5.7 \mathrm{~Hz}), 4.44-4.38(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.34(\mathrm{~m}, 1 \mathrm{H}), 2.98-2.86(\mathrm{~m}, 1$ H), 2.74-2.70(m, 1 H$), 2.60-2.56(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.51(\mathrm{~m}, 4 \mathrm{H}), 1.31,1.30,1.29(3 \mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 172.6,137.9,128.2,126.2,72.5,64.9,64.7,56.0,55.9,55.5,55.4,54.6,53.4,53.0,32.3$, 31.9, 26.7, 26.5, 20.5, 20.2; MS (EI) m/z 292 (M ${ }^{+}$, 33), 185 (19), 107 (100), 79 (78); HRMS (EI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{5}$ 292.1311, found 292.1312.

((2S,3S)-3-(2-(2-Methyloxirane-2-yl)ethyl)oxiran-2-yl)methyl furan-2-carboxylate (49). According to the procedure used for $42,385 \mathrm{mg}(1.53 \mathrm{mmol}, 64 \%)$ of 49 was obtained as a yellow oily mixture of diastereomers (1:1): IR (neat) $3138,2930,1723,1580,1474,1396,1328$, 1294, 1231, 1179, 1119, 1015, 963, 884, $762 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.60(\mathrm{~d}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}), 7.22(\mathrm{~d}$, $1 \mathrm{H}, J=3.5 \mathrm{~Hz}), 6.52(\mathrm{dd}, 1 \mathrm{H}, J=3.5,1.7 \mathrm{~Hz}), 4.57(\mathrm{ddd}, 1 \mathrm{H}, J=12.2,6.0,3.4 \mathrm{~Hz}), 4.18$ (ddd, $1 \mathrm{H}, \mathrm{J}=12.2,6.0,1.6 \mathrm{~Hz}), 3.11-3.05(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.56(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.61$
(m, 4 H$), 1.33,1.32(2 \mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR} \delta 158.3,146.7,144.2,118.6,112.0,64.9,56.4,56.3$, 56.2, 55.4, 55.3, 53.9, 53.6, 32.9, 32.5, 27.4, 27.1, 21.0, 20.8; MS (EI) m/z $252\left(\mathrm{M}^{+}, 15\right), 180$ (45), 164 (93), 95 (100); HRMS (EI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{5} 252.0998$, found 252.1000.

((2S,3S)-3-(2-(2-Methyloxirane-2-yl)ethyl)oxiran-2-yl)methyl
benzofuran-2-carboxylate (50). According to the procedure used for $\mathbf{4 2}, 1.24 \mathrm{~g}(4.11 \mathrm{mmol}, 62 \%)$ of 50 was obtained as a colorless oily mixture of diastereomers (1:1): IR (neat) 2951, 1731, 1613, 1564, 1476, 1447, 1390, 1259, 1096, 970, 839, $751 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.73(\mathrm{~d}, 1 \mathrm{H}, J=12.2 \mathrm{~Hz}), 7.62-7.59(\mathrm{~m}, 2$ H), 7.50-7.45 (m, 1 H$), 7.36-7.30(\mathrm{~m}, 1 \mathrm{H}), 4.67(\mathrm{ddd}, 1 \mathrm{H}, J=9.6,6.1,3.5 \mathrm{~Hz}), 4.26(\mathrm{ddd}, 1 \mathrm{H}$, $J=12.1,6.0,1.4 \mathrm{~Hz}), 3.18-3.13(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.60(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.62(\mathrm{~m}$, $4 \mathrm{H}), 1.35,1.34(2 \mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 158.8,155.4,144.6,144.0,127.5,126.5,123.6,122.6$, $114.2,112.0,112.0,65.1,55.9,55.8,54.9,54.8,53.5,53.2,32.5,32.1,27.0,26.7,20.7,20.4$ 29.2, 22.0; MS (EI) m/z $302\left(\mathrm{M}^{+}, 9\right), 162$ (49), 145 (100), 89 (50); HRMS (EI) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} 302.1154$, found 302.1147.

((2S,3S)-3-(2-((S)-2-Methyloxirane-2-yl)ethyl)oxiran-2-yl)methyl acetate (51). To a solution of $1.00 \mathrm{~g}(5.41 \mathrm{mmol})$ of 42 in 2.05 mL of TBME was added $52.0 \mathrm{mg}(0.0820 \mathrm{mmol})$ of $(1 R, 2 R)-$ (-)-[1,2-cyclohexanediamino-N,N'-bis(3,5-di-t-butylsalicylidene)]chromium(III) chloride (60). The resulting brown mixture was stirred for 5 min at rt , cooled to $0{ }^{\circ} \mathrm{C}$ and treated with 0.180 mL
(2.97 mmol) of 2-propanol and $0.325 \mathrm{~mL}(2.97 \mathrm{mmol})$ of TMSN_{3}. The reaction mixture was stirred at rt for 6 h , concentrated and purified by chromatography on SiO_{2} (4:1 hexanes/EtOAc) to give $310 \mathrm{mg}(1.68 \mathrm{mmol})$ of 51 and azide as a orange oil $(2.60: 1)$. To the crude mixture was added $24 \mathrm{mg}(0.0947 \mathrm{mmol})$ of Pd / C followed by 4.7 mL of MeOH . The reaction mixture was stirred under an atmosphere of H_{2} at rt for 2 h , before being filtered through a pad of celite. The filtrate was concentrated and purified by chromatography on $\mathrm{SiO}_{2}(4: 1$ hexanes/EtOAc) to afford $290 \mathrm{mg}(1.57 \mathrm{mmol}, 29 \%)$ of 51 as a colorless oil and single diastereomer: $[\alpha]_{\mathrm{D}}+25.6$ (c 2.3, CHCl_{3}); IR (neat) 2933, 1743, 1450, 1369, 1232, 1036, 973, 885, 729, 699, $606 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 4.34(\mathrm{dd}, 1 \mathrm{H}, J=12.2,3.3 \mathrm{~Hz}), 3.92(\mathrm{dd}, 1 \mathrm{H}, J=12.2,6.2 \mathrm{~Hz}), 3.01-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.90-2.87$ $(\mathrm{m}, 1 \mathrm{H}), 2.63-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.63(\mathrm{~m}, 4 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 170.1, 64.4, 56.2, 56.0, 55.9, 55.2, 53.4, 32.3, 26.9, 20.6; MS (EI) m/z 201 ([M+1] ${ }^{+}$, 5), 187 (25), 97 (62), 83 (63), 69 (100), 56 (92); HRMS (EI) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{4}$ 200.1049, found 200.1055.

((2S,3S)-3-(2-((S)-2-Methyloxirane-2-yl)ethyl)oxiran-2-yl)methyl benzoate (52). According to the procedure used for $51,23.2 \mathrm{mg}(0.089 \mathrm{mmol}, 21 \%)$ of 52 was obtained as a colorless oil and single diastereomer: $[\alpha]_{\mathrm{D}}+11.1$ (c 1.0, CHCl_{3}); IR (neat) 2933, 1743, 1450, 1369, 1232, 973, $885,729,699,642,606 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 8.07(\mathrm{~d}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 7.58(\mathrm{t}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz})$, $7.45(\mathrm{t}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}), 4.61(\mathrm{dd}, 1 \mathrm{H}, J=12.2,3.3 \mathrm{~Hz}), 4.20(\mathrm{dd}, 1 \mathrm{H}, J=12.2,6.1 \mathrm{~Hz}), 3.14-$ $3.11(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.64,2.60(\mathrm{AB}, 2 \mathrm{H}, J=4.7 \mathrm{~Hz}), 1.78-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.34(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 166.3,133.2,129.7,128.4,64.9,56.2,56.1,55.5,53.6,32.5,27.1,21.0$; MS
(EI) $\mathrm{m} / \mathrm{z} 262\left(\mathrm{M}^{+}, 21\right), 139$ (19), 105 (55), 77 (100), 69 (37); HRMS (EI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4}$ 262.1205, found 262.1210 .

((2S,3S)-3-(2-((S)-2-Methyloxirane-2-yl)ethyl)oxiran-2-yl)methyl
2,4-dimethoxybenzoate
(53). According to the procedure used for $51,95.0 \mathrm{mg}(0.296 \mathrm{mmol}, 19 \%)$ of 53 was obtained as a colorless oil and single diastereomer: $[\alpha]_{\mathrm{D}}+9.7\left(c 0.37, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR} \delta 7.90(\mathrm{~d}, 1 \mathrm{H}, J=$ $9.1 \mathrm{~Hz}), 6.55-6.48(\mathrm{~m}, 2 \mathrm{H}), 4.53(\mathrm{dd}, 1 \mathrm{H}, J=12.2,3.4 \mathrm{~Hz}), 4.16(\mathrm{dd}, 1 \mathrm{H}, J=12.2,6.2 \mathrm{~Hz})$, $3.90(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.13-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.98-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.64,2.60(\mathrm{AB}, 2 \mathrm{H}, \mathrm{J}=4.7$ Hz), 1.81-1.61 (m, 4 H$), 1.34(\mathrm{~s}, 3 \mathrm{H})$; MS (EI) m/z $322\left(\mathrm{M}^{+}, 38\right), 182$ (52), 165 (100), 97 (32), 69 (39); HRMS (EI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{6} 322.1411$, found 322.1416.

((2S,3S)-3-(2-((S)-2-Methyloxirane-2-yl)ethyl)oxiran-2-yl)methyl (54). According to the procedure used for 51, $160 \mathrm{mg}(0.496 \mathrm{mmol}, 32 \%)$ of 54 was obtained as a colorless oil and single diastereomer: $[\alpha]_{\mathrm{D}}+14.7\left(c 0.17, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR} \delta 7.71(\mathrm{dd}, 1 \mathrm{H}, J=$ $8.4,1.9 \mathrm{~Hz}), 7.55(\mathrm{~d}, 1 \mathrm{H}, J=1.9 \mathrm{~Hz}), 6.90(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 4.60(\mathrm{dd}, 1 \mathrm{H}, J=12.1,3.3 \mathrm{~Hz})$, $4.16(\mathrm{dd}, 1 \mathrm{H}, J=12.2,6.2 \mathrm{~Hz}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.13-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.98-2.95(\mathrm{~m}, 1$ H), 2.64, $2.60(\mathrm{AB}, 2 \mathrm{H}, \mathrm{J}=, 4.7 \mathrm{~Hz}), 1.81-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS}$ (EI) m/z 322
$\left(\mathrm{M}^{+}, 16\right), 182$ (19), 165 (100), 69 (15); HRMS (EI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{6} 322.1414$, found 322.1416.

((2S,3S)-3-(2-((S)-2-Methyloxirane-2-yl)ethyl)oxiran-2-yl)methyl 3,4,5-trimethoxybenzoate (55). According to the procedure used for 51, $116 \mathrm{mg}(0.329 \mathrm{mmol}, 26 \%)$ of 55 was obtained as a light yellow oil and single diastereomer: $[\alpha]_{\mathrm{D}}+20.0$ (c 0.98, CHCl_{3}); IR (neat) 2942, 2641, 2252, 1956, 1716, 1589, 1336, 1127, 1001, 916, 731, 675, $647 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.31$ (s, 2 H), $4.63(\mathrm{dd}, 1 \mathrm{H}, J=12.2,3.2 \mathrm{~Hz}), 4.14(\mathrm{dd}, 1 \mathrm{H}, J=12.2,6.4 \mathrm{~Hz}), 3.91(\mathrm{~s}, 9 \mathrm{H}), 3.15-3.11(\mathrm{~m}, 1$ H), 2.98-2.95(m, 1H), 2.64, $2.60(\mathrm{AB}, 2 \mathrm{H}, \mathrm{J}=4.7 \mathrm{~Hz})$), $1.74-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\delta 165.6,152.6,142.1,124.3,106.6,65.0,60.6,55.9,55.8,55.7,55.2,53.2,32.2,26.8$, 20.7; MS (EI) m/z $352\left(\mathrm{M}^{+}, 81\right), 212$ (43), 195 (100); HRMS (EI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{7}$ 352.1522, found 352.1527 .

((2S,3S)-3-(2-((S)-2-Methyloxirane-2-yl)ethyl)oxiran-2-yl)methyl 4-methoxybenzoate (56). According to the procedure used for $51,56.0 \mathrm{mg}(0.191 \mathrm{mmol}, 23 \%)$ of 56 was obtained as a light yellow oil and single diastereomer: $[\alpha]_{\mathrm{D}}+20.0\left(c 1.0, \mathrm{CHCl}_{3}\right.$); IR (neat) 3502, 2934, 1713, 1606, 1511, 1455, 1257, 1168, 848, 770, 734, 697, $613 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR} \delta 8.01(\mathrm{~d}, 2 \mathrm{H}, J=7.0$ $\mathrm{Hz}), 6.92(\mathrm{~d}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 4.57(\mathrm{dd}, 1 \mathrm{H}, J=12.2,3.2 \mathrm{~Hz}), 4.16(\mathrm{dd}, 1 \mathrm{H}, J=12.2,6.0 \mathrm{~Hz})$,
$3.87(\mathrm{~s}, 3 \mathrm{H}), 3.13-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.98-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.64,2.60(\mathrm{AB}, 2 \mathrm{H}, \mathrm{J}=4.7 \mathrm{~Hz}), 1.78-1.58$ (m, 4 H), $1.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 165.9,163.4,131.7,121.9,113.6,64.6,56.1,55.9$, 55.5, 55.5, 53.4, 32.4, 27.0, 20.9; MS (EI) m/z 292 (M ${ }^{+}, 32$), 152 (63), 135 (100), 92 (51), 77 (61), HRMS (EI) m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{5} 292.1311$, found 292.1319.

((2S,3S)-3-(2-((S)-2-Methyloxirane-2-yl)ethyl)oxiran-2-yl)methyl
2-hydroxy-2-
phenylacetate (57). According to the procedure used for 51, $43.0 \mathrm{mg}(0.147 \mathrm{mmol}, 30 \%)$ of 57 was obtained as a colorless oil: $[\alpha]_{\mathrm{D}}+9.6$ (c 1.0, CHCl_{3}); IR (neat) 3446, 3032, 2929, 1743, 1494, 1453, 1391, 1181, 1097, 1067, 1028, 984, 897, 786, 733, $699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.45-7.33$ $(\mathrm{m}, 5 \mathrm{H}), 5.22(\mathrm{~d}, 1 \mathrm{H}, J=5.7 \mathrm{~Hz}), 4.44-4.39(\mathrm{~m}, 1 \mathrm{H}), 4.13-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.48-3.39(\mathrm{~m}, 1 \mathrm{H})$, 2.96-2.86(m, 1 H$), 2.74-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.56(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (major isomer) $\delta 173.2,138.0,128.6,126.5,72.8,65.6,65.3,56.1,55.9,55.7,54.9,53.8$, 53.4, 32.3, 26.9, 20.9; MS (EI) m/z $292\left(\mathrm{M}^{+}, 5\right), 155$ (13), 111 (74), 107 (57), 77 (100); HRMS (EI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{5}$ 292.1311, found 292.1308.

((2S,3S)-3-(2-((S)-2-Methyloxirane-2-yl)ethyl)oxiran-2-yl)methyl furan-2-carboxylate (58). According to the procedure used for $51,85.0 \mathrm{mg}(0.337 \mathrm{mmol}, 44 \%)$ of 58 was obtained as a colorless oil and single diastereomer: $[\alpha]_{\mathrm{D}}+24.0$ (c $0.88, \mathrm{CHCl}_{3}$); IR (neat) 2985, 2306, 1724,

1581, 1474, 1397, 1296, 1181, 1076, 1015, 966, 885, $742 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.60(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.6$ $\mathrm{Hz}), 7.22(\mathrm{~d}, 1 \mathrm{H}, J=3.4 \mathrm{~Hz}), 6.54-6.52(\mathrm{~m}, 1 \mathrm{H}), 4.57(\mathrm{dd}, 1 \mathrm{H}, J=12.2,6.0 \mathrm{~Hz}), 4.18(\mathrm{dd}, 1 \mathrm{H}$, $J=12.1,6.0 \mathrm{~Hz}), 3.11-3.09(\mathrm{~m}, 1 \mathrm{H}), 3.04-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.64,2.60(\mathrm{AB}, 2 \mathrm{H}, J=4.7 \mathrm{~Hz}), 1.80-$ $1.60(\mathrm{~m}, 4 \mathrm{H}), 1.33\left(\mathrm{~s}, 3 \mathrm{H}\right.$) ; ${ }^{13} \mathrm{C}$ NMR $\delta 158.0,146.5,143.8,118.3,111.7,64.6,55.9,55.8$, 54.9, 53.2, 32.2, 26.8, 20.8; MS (EI) $\mathrm{m} / \mathrm{z} 252\left(\mathrm{M}^{+}, 15\right), 180$ (45), 164 (93), 95 (100); HRMS (EI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{5} 252.0998$, found 252.1003.

((2S,3S)-3-(2-((S)-2-Methyloxirane-2-yl)ethyl)oxiran-2-yl)methyl benzofuran-2-carboxylate (59). According to the procedure used for $\mathbf{5 1}, 174 \mathrm{mg}(0.576 \mathrm{mmol}, 41 \%)$ of 59 was obtained as a colorless solid and single diastereomer: $\mathrm{mp} 70-74{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+10.9\left(c 1.0, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}(\mathrm{KBr})$ 2966, 1712, 1571, 1443, 1293, 970, 918, 802, $751 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR} \delta 7.70(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz})$, 7.61-7.58 (m, 2 H), 7.47 (app. t, $1 \mathrm{H}, J=7.3 \mathrm{~Hz}$), 7.31 (app. t, $1 \mathrm{H}, J=7.3 \mathrm{~Hz})$), 4.65 (dd, $1 \mathrm{H}, J$ $=12.2,3.4 \mathrm{~Hz}), 4.26(\mathrm{dd}, 1 \mathrm{H}, J=12.1,6.1 \mathrm{~Hz}), 3.16-3.10(\mathrm{~m}, 1 \mathrm{H}), 3.04-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.64$, $2.60(\mathrm{AB}, 2 \mathrm{H}, J=4.7 \mathrm{~Hz}), 1.79-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR} \delta 159.0,155.6,144.8$, $127.6,126.7,123.7,122.7,114.3,114.1,112.2,65.4,65.2,56.0,55.0,53.6,53.5,53.3,32.7,32.3$, 27.1, 26.9, 20.8, 20.5; MS (EI) m/z 142 ($\mathrm{M}^{+}, 36$), 162 (45), 145 (100), 89 (50); HRMS (EI) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} 302.1154$, found 302.1166.

(R)-2-Acetoxy-1-((2S,5R)-5-(acetoxymethyl)-5-methyltetrahydrofuran-2-yl)ethyl acetate
(61). To a solution of $25.0 \mathrm{mg}(0.135 \mathrm{mmol})$ of 51 in 0.680 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 3.94 mg $(0.0135 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ and $4.28 \mathrm{mg}(0.0207 \mathrm{mmol})$ of AgClO_{4}. The reaction mixture was stirred at rt for 5 h , quenched with 0.20 mL of $\mathrm{H}_{2} \mathrm{O}$, filtered through a pad of celite, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give a yellow oil. To the crude oil was added 0.50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $94 \mu \mathrm{l}(0.99 \mathrm{mmol})$ of acetic anhydride, and $1.2 \mathrm{mg}(0.099 \mathrm{mmol})$ of DMAP. The reaction was cooled to $0{ }^{\circ} \mathrm{C}$ at which point $0.164 \mathrm{~mL}(0.990 \mathrm{mmol})$ of DIPEA was added. The mixture was stirred at rt for 12 h , and quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{x} 3)$, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated and purified by chromatography on SiO_{2} (4:1 hexanes/EtOAc) to afford $13.4 \mathrm{mg}(0.0443 \mathrm{mmol}, 35 \%)$ of crude $\mathbf{6 1}$ as a yellow oil: $[\alpha]_{\mathrm{D}}-0.89\left(c 1.34, \mathrm{CHCl}_{3}\right)$; IR (neat) $2971,1743,1455,1373,1232,1119,1047 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 5.11-5.04(\mathrm{~m}, 1 \mathrm{H}), 4.47-4.39(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.07(\mathrm{~m}, 2 \mathrm{H}), 3.99,3.96(\mathrm{AB}, 2 \mathrm{H}, J=11.4 \mathrm{~Hz})$, $2.11(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.57(\mathrm{~m}, 4 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H})$; MS (EI) m/z 243 ([M$\left.\mathrm{OAc}]^{+}, 51\right), 229(100), 127(21), 97(30), 71$ (48); HRMS (EI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{7}$ (M-OAc) 243.1232, found 243.1239.

(R)-2-Acetoxy-1-((2S,5R)-5-(acetoxymethyl)-5-methyltetrahydrofuran-2-yl)ethyl benzoate (62). According to the procedure for $\mathbf{6 1}, 6.9 \mathrm{mg}(0.0190 \mathrm{mmol}, 21 \%)$ of $\mathbf{6 2}$ was obtained as a yellow oil in a 1.2:1 mixture of regioisomers (only major isomer shown): IR (neat) 2924, 2853,

1724, 1452, 1373, 1272, 1229, 1112, 1046, $712 \mathrm{~cm}^{-1}$; Major isomer : ${ }^{1} \mathrm{H}$ NMR $\delta 8.02(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ $7.5 \mathrm{~Hz}), 7.61-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 2 \mathrm{H}), 5.26(\mathrm{dt}, 1 \mathrm{H}, J=6.4,3.2 \mathrm{~Hz}), 4.35(\mathrm{ABX}, 2 \mathrm{H}$, $J=12.2,6.8,2.9 \mathrm{~Hz}), 4.31-4.21(\mathrm{~m}, 1 \mathrm{H}), 4.02,3.98(\mathrm{AB}, 2 \mathrm{H}, J=11.3 \mathrm{~Hz}), 2.16-1.90(\mathrm{~m}, 8 \mathrm{H})$, 1.74-1.66 (m, 2 H), 1.26 ($\mathrm{s}, 3 \mathrm{H}$); MS (EI) m/z 321 (20), 157 (93), 149 (68), 105 (100), 97 (91), 77 (66), 69 (48); HRMS (EI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{7}\left(\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}\right)$ 321.1328, found 321.1338.

(R)-2-Acetoxy-1-((2S,5R)-5-(acetoxymethyl)-5-methyltetrahydrofuran-2-yl)ethyl hydroxy-2-phenylacetate (66). According to the procedure used for $\mathbf{6 1}, 3.6 \mathrm{mg}(0.00898 \mathrm{mmol}$, 11%) of crude 66 as a yellow oil in a 1.1:1 mixture of regioisomers (only major isomer shown): ${ }^{1} \mathrm{H}$ NMR $\delta 7.45-7.33(\mathrm{~m}, 5 \mathrm{H}), 5.07(\mathrm{dt}, 1 \mathrm{H}, J=6.8,3.2 \mathrm{~Hz}), 5.00(\mathrm{dt}, 1 \mathrm{H}, J=7.0,3.6 \mathrm{~Hz})$, 4.50-3.85 (m, 8 H$), 2.12-1.64(\mathrm{~m}, 9 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H})$.

(R)-2-Acetoxy-1-((2S,5R)-5-(acetoxymethyl)-5-methyltetrahydrofuran-2-yl)ethyl furan-2carboxylate (68). According to the procedure used for $\mathbf{6 1}, 19.6 \mathrm{mg}(0.0477 \mathrm{mmol}, 56 \%)$ of $\mathbf{6 8}$ was obtained as a yellow oil in a 1.9:1 ratio of regioisomers (only major isomer shown) in addition to $10.0 \mathrm{mg}(0.0340 \mathrm{mmol}, 35 \%)$ of crude 72 as a yellow oil.
(R)-2-Acetoxy-1-((2S,5R)-5-(acetoxymethyl)-5-methyltetrahydrofuran-2-yl)ethyl furan-2carboxylate (68): $[\alpha]_{\mathrm{D}}+8.5$ (c 1.14, CHCl_{3}); IR (neat) 3140, 2971, 1720, 1580, 1474, 1374,

1225, 1047, 937, 884, 763, 736, 702, $597 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.58(\mathrm{~d}, 1 \mathrm{H}, J=4.7 \mathrm{~Hz}), 7.25-7.20$ $(\mathrm{m}, 1 \mathrm{H}), 6.52-6.50(\mathrm{~m}, 1 \mathrm{H}), 5.33(\mathrm{dt}, 0.4 \mathrm{H}, J=6.4,2.9 \mathrm{~Hz}), 5.20(\mathrm{dt}, 1 \mathrm{H}, J=6.4,2.9 \mathrm{~Hz})$, 4.65-3.90 (m, 5 H$), 2.12-1.69(\mathrm{~m}, 10 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H})$; MS (EI) m/z $252\left(\mathrm{M}^{+}, 15\right), 180(45), 164$ (93), 95 (100); HRMS (EI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{8} 354.1329$, found 354.13404.

(R)-2-Acetoxy-1-((2S)-5-methyl-3,6-dihydro-2H-pyran-2-yl)ethyl furan-2-carboxylate (72): ${ }^{1} \mathrm{H}$ NMR $\delta 7.59(\mathrm{bs}, 1 \mathrm{H}), 7.17(\mathrm{~d}, 1 \mathrm{H}, J=3.3 \mathrm{~Hz}), 6.52(\mathrm{dd}, 1 \mathrm{H}, J=3.4,1.7 \mathrm{~Hz}), 5.50-5.49(\mathrm{~m}$, $1 \mathrm{H}), 5.16(\mathrm{dt}, 1 \mathrm{H}, J=6.3,2.8 \mathrm{~Hz}), 4.65(\mathrm{~d}$ of AB, $1 \mathrm{H}, J=12.0,2.8 \mathrm{~Hz}), 4.46(\mathrm{~d}$ of AB, $1 \mathrm{H}, J$ $=12.1,6.6 \mathrm{~Hz}), 4.05(\mathrm{~s}, 3 \mathrm{H}), 3.76-3.69(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.07-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 170.4,158.5,146.7,144.4,133.0,118.4,117.6,111.9,73.2,72.2,69.3,63.2,26.9$, 21.1, 18.6; MS (EI) m/z 294 (M ${ }^{+}, 15$), 182 (22), 140 (44), 122 (69), 95 (100), 69 (64); HRMS (EI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{6}$ 294.1103, found 294.1111.

(R)-2-Acetoxy-1-((2S,5R)-5-(acetoxymethyl)-5-methyltetrahydrofuran-2-yl)ethyl
benzofuran-2-carboxylate (70). According to the procedure used for 61, $14.5 \mathrm{mg}(0.0359$ $\mathrm{mmol}, 46 \%$) of 70 was obtained as a yellow oil in a 4.5:1 mixture of regioisomers (only major isomer shown): $[\alpha]_{\mathrm{D}}+8.5$ (c 1.14, CHCl_{3}); IR (neat) $2971,1739,1647,1563,1372,1297,1234$, 886, $751,702 \mathrm{~cm}^{-1}$; Major isomer: ${ }^{1} \mathrm{H}$ NMR $\delta 7.59(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 7.49(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz})$,
$7.51(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 1 \mathrm{H}), 5.24(\mathrm{dt}, 1 \mathrm{H}, J=6.5,2.8 \mathrm{~Hz}), 4.72(\mathrm{~d}$ of $\mathrm{AB}, 1 \mathrm{H}, J=12.0,2.8 \mathrm{~Hz}), 4.45(\mathrm{~d}$ of $\mathrm{AB}, 1 \mathrm{H}, J=12.0,6.5 \mathrm{~Hz}), 4.31-4.23(\mathrm{~m}, 1 \mathrm{H}), 4.02,3.98$ $(\mathrm{AB}, 2 \mathrm{H}, J=11.3 \mathrm{~Hz}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.09-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.70(\mathrm{~m}, 1 \mathrm{H})$, 1.32-1.23 (m, 1 H$), 1.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 170.9,170.3,159.2,155.8,145.0,127.7$, 126.9, $123.8,122.9,114.2,112.4,82.6,72.4,69.3,63.9,33.4,31.9,28.1,23.9,21.0,20.9 ;$ MS (EI) m / z $404\left(\mathrm{M}^{+}, 29\right), 331$ (89), 183 (37), 162 (100), 109 (85), 89 (94); HRMS (EI) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{8} 404.1471$, found 404.1472.

2-Triisopropylsiloxymethyl-3,4-dihydro-2H-pyran-6-yl-trimethylstannane (88). ${ }^{26}$ To a -78
${ }^{\circ} \mathrm{C}$ suspension of $250 \mathrm{mg}(2.22 \mathrm{mmol})$ of freshly sublimed potassium tert-butoxide in 3.6 mL of hexanes was added 1.4 mL of $n-\operatorname{BuLi}(1.6 \mathrm{M}$ in hexanes, 2.31 mmol$)$ and $0.464 \mathrm{~mL}(3.07 \mathrm{mmol})$ of TMEDA. The reaction mixture warmed to $-15{ }^{\circ} \mathrm{C}$ for 30 min . After re-cooling to $-78{ }^{\circ} \mathrm{C}$, a solution of $400 \mathrm{mg}(1.48 \mathrm{mmol})$ of 107 in 0.30 mL of hexanes was added and the mixture was allowed to warm to $-15{ }^{\circ} \mathrm{C}$ over a period of 2 h . The reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ at which point a solution of $676 \mathrm{mg}(3.30 \mathrm{mmol})$ of $\mathrm{Me}_{3} \mathrm{SnCl}$ in 1.0 mL of hexanes was added in one portion. The reaction mixture warmed to rt for 1 h before it was quenched with water. The aqueous layer was extracted with ether (x 2), dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated and purified by chromatography on SiO_{2} (hexanes) to afford $562 \mathrm{mg}(1.18 \mathrm{mmol}, 85 \%)$ of $\mathbf{8 8}$ as a colorless oil: IR (neat) 2955, 2922, 2866, 1607, 1463, 1376, 1270, 1218, 1183, 1139, 1108, $1057 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 4.77-4.75(\mathrm{~m}, 1 \mathrm{H}), 3.82-3.66(\mathrm{~m}, 4 \mathrm{H}), 2.18-1.88(\mathrm{~m}, 6 \mathrm{H}), 1.73-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3$ H), $\begin{array}{lllllllll}1.08-1.05 & (\mathrm{~m}, & 47 & \mathrm{H}), & 0.145 & (\mathrm{~s}, & 11 & \mathrm{H}) ; & { }^{13} \mathrm{C} \quad \text { NMR }\end{array}$
$\delta 162.0,111.3,75.9,66.1,24.6,20.9,18.0,17.9,12.0,-9.8 ; \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z} 434\left(\mathrm{M}^{+}, 14\right), 391$ (49), 227 (97), 165 (100), 163 (74), 101 (33), 75 (34), 59 (38); HRMS (EI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{SiSn} 434.1663$, found 434.1664 .

tert-Butyl-(5-iodopent-2-enyloxy)-diphenylsilane (89). ${ }^{29}$ This compound was prepared in 70\% yield by a known procedure and its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with the reported data.

6-(tert-Butyldimethylsilanyloxymethyl)-tetrahydropyran-2-one (102). ${ }^{29}$ This compound was prepared in 65% yield by a known procedure and its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with the reported data: ${ }^{1} \mathrm{H}$ NMR $\delta 4.37(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=5.0 \mathrm{~Hz}), 2.70-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.20-1.60$ (m, 4 H), 1.90 (s, 9 H), 0.07, (s, 6 H).

$\stackrel{\mathrm{O}}{ }{ }^{\circ}$

3-Triisopropylsiloxy-1,2-epoxypropane (104). ${ }^{26}$ This compound was prepared by a known procedure in 81% yield and its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with the reported data: ${ }^{1} \mathrm{H}$ NMR $\delta 3.91(\mathrm{dd}, 1 \mathrm{H}, J=11.6,3.2 \mathrm{~Hz}), 3.75(\mathrm{dd}, 1 \mathrm{H}, J=11.6,4.6 \mathrm{~Hz}), 3.11(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{dd}, 1 \mathrm{H}$, $J=5.1,4.3 \mathrm{~Hz}), 2.67(\mathrm{dd}, 1 \mathrm{H}, J=5.2,2.6 \mathrm{~Hz}), 1.14-1.00(\mathrm{~m}, 21 \mathrm{H})$.

6-Hydroxy-7-triisopropylsiloxyhept-1-ene (105). ${ }^{26}$ This compound was prepared by a known procedure in 95% yield and its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with the reported data: ${ }^{1} \mathrm{H}$ NMR $\delta 5.81(\mathrm{~m}, 1 \mathrm{H}), 5.01(\mathrm{~m}, 1 \mathrm{H}), 4.95(\mathrm{dd}, 1 \mathrm{H}, J=17.1,1.6 \mathrm{~Hz}), 3.71(\mathrm{dd}, 1 \mathrm{H}, J=9.5,3.3 \mathrm{~Hz})$, 3.69-3.64 (m, 1 H$), 3.48(\mathrm{dd}, 1 \mathrm{H}, J=9.5,7.7 \mathrm{~Hz}), 2.53(\mathrm{t}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}), 2.10-2.06(\mathrm{~m}, 2 \mathrm{H})$, $1.60-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.39(\mathrm{~m}, 3 \mathrm{H}), 1.15-1.00(\mathrm{~m}, 21 \mathrm{H})$.

6-Hydroxy-2-triisopropylsiloxymethyl-3,4,5,6-tetrahydro-2H-pyran (106). ${ }^{26}$ This compound was prepared by a known procedure in 75% yield and its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with the reported data: ${ }^{1} \mathrm{H}$ NMR $\delta 9.78(\mathrm{t}, 0.06 \mathrm{H}, J=1.5 \mathrm{~Hz}), 5.26(\mathrm{~s}, 0.41 \mathrm{H}), 4.75-4.72(\mathrm{~m} .0 .53 \mathrm{H})$, 4.05-4.00 (m, 0.41 H), 3.85-3.79 (m, 0.59 H), $3.71(\mathrm{dd}, 0.41 \mathrm{H}, J=10.0,5.3 \mathrm{~Hz}), 3.61(\mathrm{dd}, 0.53$ $\mathrm{H}, J=9.7,6.7 \mathrm{~Hz}), 3.58-3.53(\mathrm{~m} .0 .94 \mathrm{H}), 3.48(\mathrm{dd}, 0.06 \mathrm{H}, J=7.14,8.6 \mathrm{~Hz}), 3.07(\mathrm{~d}, 0.53 \mathrm{H}, J$ $=6.2 \mathrm{~Hz}), 2.59(\mathrm{dt}, 0.12 \mathrm{H}, J=7.2,1.4 \mathrm{~Hz}), 1.94-0.94(\mathrm{~m}, 27 \mathrm{H})$.

2-Triisopropylsilyloxymethyl-3,4-dihydro-2H-pyran (107). ${ }^{26}$ This compound was prepared by a known procedure in 64% yield and its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with the reported data: ${ }^{1} \mathrm{H}$ NMR $\delta 6.36(\mathrm{~d}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}), 4.67-4.64(\mathrm{~m}, 1 \mathrm{H}), 3.90-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{dd}, 1 \mathrm{H}$,
$J=9.9,5.1 \mathrm{~Hz}), 3.69(\mathrm{dd}, 1 \mathrm{H}, J=9.9,6.1 \mathrm{~Hz}), 2.12-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.70-$ $1.64(\mathrm{~m}, 1 \mathrm{H}), 1.15-1.02(\mathrm{~m}, 21 \mathrm{H})$.
THPO

3-Tetrahydropyranyloxy-1-propanol (108). ${ }^{27}$ This compound was prepared by a known procedure in quantitative yield and its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with the reported data: ${ }^{1} \mathrm{H}$ NMR $\delta 4.52(\mathrm{t}, 1 \mathrm{H}, J=4.5 \mathrm{~Hz}), 4.95-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.60-3.40(\mathrm{~m}, 3 \mathrm{H}), 2.85-2.65(\mathrm{~s}, 1 \mathrm{H})$, $1.90-1.40(\mathrm{~m}, 8 \mathrm{H})$.

Ethyl (E)-5-tetrahydropyranyloxy-2-penteneoate (110). ${ }^{27}$ This compound was prepared by a known procedure in 72% yield and its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with the reported data: ${ }^{1} \mathrm{H}$ NMR $\delta 6.97(\mathrm{dt}, 1 \mathrm{H}, J=15.9,7.0 \mathrm{~Hz}), 5.88(\mathrm{dt}, 1 \mathrm{H}, J=15.9,1.5 \mathrm{~Hz}), 4.60(\mathrm{t}, 1 \mathrm{H}, J=3.1$ $\mathrm{Hz}), 4.17(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 3.87-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.53-3.47(\mathrm{~m}, 2 \mathrm{H}) 2.49(\mathrm{dq}, 2 \mathrm{H}, J=6.7,1.8$ $\mathrm{Hz}), 1.84-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.27(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz})$.

4-[(2-Tetrahydropyranyl)oxy]butyne (111). ${ }^{28}$ This compound was prepared by a known procedure in 78% yield and its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with the reported data: ${ }^{1} \mathrm{H}$ NMR $\delta 5.79-5.72(\mathrm{~m}, 2 \mathrm{H}), 4.60(\mathrm{t}, 1 \mathrm{H}, J=3.5 \mathrm{~Hz}), 3.94-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.77-3.45(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{td}, 2$ $\mathrm{H}, J=7.0,2.5 \mathrm{~Hz}), 1.94(\mathrm{t}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}), 1.88-1.42(\mathrm{~m}, 6 \mathrm{H})$.

OTBPOS

tert-Butyldiphenyl-[5-(tetrahydropyran-2-yloxy)-pent-2-enyloxy]-silane (112). ${ }^{28}$ This compound was prepared in 88% yield by a known procedure and its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with the reported data: ${ }^{1} \mathrm{H}$ NMR $\delta 5.75-5.60(\mathrm{~m}, 2 \mathrm{H}), 4.62-4.60(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.16(\mathrm{~m}$, $2 H), 3.92-3.73(\mathrm{~m}, 2 \mathrm{H}), 3.52-3.39(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{q}, 2 \mathrm{H}, J=13.1,6.8 \mathrm{~Hz}), 1.85-1.52(\mathrm{~m}, 9 \mathrm{H})$, 1.09-1.05 (m, 12 H$)$.

5-(tert-Butyldiphenylsilanyloxy)-pent-3-en-1-ol (113). ${ }^{28}$ This compound was prepared by a known procedure in 74% yield and its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with the reported data: ${ }^{1} \mathrm{H}$ NMR $\delta 7.70-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 6 \mathrm{H}), 5.71-5.63(\mathrm{~m}, 2 \mathrm{H}), 4.19(\mathrm{~d}, 1 \mathrm{H}, J=1.3 \mathrm{~Hz})$, 3.64-3.63 (m, 2 H$), 2.30(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=6.1 \mathrm{~Hz}), 1.60(\mathrm{~s}, 1 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H})$.

THPO \qquad
2-Prop-2-ynyloxytetrahydropyran (116). ${ }^{28}$ This compound was prepared by a known procedure in 89% yield and its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with the reported data: ${ }^{1} \mathrm{H}$ NMR $\delta 4.80(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{~d}, 2 \mathrm{H}, J=2.3 \mathrm{~Hz}), 4.00(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{t}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 1.80-1.30(\mathrm{~m}$, 6 H).

5-(Tetrahydropyran-2-yloxy)-pent-3-yn-1-ol (117). ${ }^{28}$ This compound was prepared by a known procedure in 77% yield and its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with the reported data:
${ }^{1} \mathrm{H}$ NMR $\delta 4.77(\mathrm{t}, 1 \mathrm{H}), 4.22(\mathrm{~m}, 2 \mathrm{H}), 4.00-3.40(\mathrm{~m}, 4 \mathrm{H}), 2.47(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{~m}, 1 \mathrm{H}), 1.60$ (m, 6 H), 1.90-1.40(m, 8 H).

2-(5-Iodopent-2-ynyloxy)-tetrahydropyran (118). ${ }^{29}$ This compound was prepared by a known procedure in 67% yield and its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with the reported data: ${ }^{1} \mathrm{H}$ NMR $\delta 4.82(\mathrm{t}, 1 \mathrm{H}, J=3.4 \mathrm{~Hz}), 4.23(\mathrm{qt}, 2 \mathrm{H}, J=15.6,2.0 \mathrm{~Hz}), 3.87-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.57-3.48(\mathrm{~m}, 1$ H), $3.21(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 2.81(\mathrm{tt}, 2 \mathrm{H}, J=7.3,2.0 \mathrm{~Hz}), 1.88-1.46(\mathrm{~m}, 6 \mathrm{H})$.

5-(Tetrahydropyran-2-yloxy)-pent-3-en-1-ol (119). ${ }^{29}$ This compound was prepared by a known procedure in 80% yield and its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with the reported data: ${ }^{1} \mathrm{H}$ NMR $\delta 4.52(\mathrm{t}, 1 \mathrm{H}, J=4.5), 4.95-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.60-3.40(\mathrm{~m}, 3 \mathrm{H}), 2.85-2.65(\mathrm{~s}, 1 \mathrm{H}), 1.90-$ $1.40(\mathrm{~m}, 8 \mathrm{H})$.

THPO

2-(5-Iodopent-2-enyloxy)-tetrahydropyran (120). ${ }^{29}$ This compound was prepared in 82% yield by a known procedure and its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with the reported data: ${ }^{1} \mathrm{H}$ NMR $\delta 5.69-5.66(\mathrm{~m}, 2 \mathrm{H}), 4.65(\mathrm{t}, 1 \mathrm{H}, J=2.9 \mathrm{~Hz}), 4.23-4.18(\mathrm{~m}, 1 \mathrm{H}), 3.98-3.84(\mathrm{~m}, 2 \mathrm{H})$, 3.58-3.48 (m, 1 H$), 3.18(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.66-2.60(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.51(\mathrm{~m}, 8 \mathrm{H})$.

Appendix A

X-ray crystal data for 59

Table 12: Crystal data and structure refinment for 59.
Identification code: jm0326t (59)
Empirical formula: $\quad \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5}$
Formula weight: 302.31
Temperature: 273(2) K
Wavelength: $0.71073 \AA$
Crystal system: Monoclinic
Space group: \quad P2(1)
Unit cell dimensions $a=10.523(2) \AA \quad=90^{\circ}$.
$\mathrm{b}=4.3519(9) \AA \quad=102.411(4)^{\circ}$.
$\mathrm{c}=16.083(3) \AA \quad=90^{\circ}$.
Volume: \quad 719.3(3) \AA^{3}
Z: 2
Density (calculated): $1.396 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient: $0.103 \mathrm{~mm}^{-1}$
F(000):
320
Crystal size: $\quad 0.29 \times 0.12 \times 0.12 \mathrm{~mm}^{3}$
Theta range for data collection: $\quad 1.98$ to 24.98°.
Index ranges: $\quad-12<=\mathrm{h}<=12,-5<=\mathrm{k}<=5,-19<=\mathrm{l}<=19$
Reflections collected: 5579
Independent reflections: $2500[\mathrm{R}(\mathrm{int})=0.0784]$
Completeness to theta $=\quad 24.98^{\circ} \quad 99.9 \%$
Absorption correction: Sadabs
Max. and min. transmission: 0.9878 and 0.9708
Refinement method: Full-matrix least-squares on F^{2}
Data / restraints / parameters: 2500 / 1 / 199
Goodness-of-fit on F2: 1.399
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})] \mathrm{R} 1=0.0963$, wR2 $=0.1996$

R indices (all data): $\quad \mathrm{R} 1=0.1170, \mathrm{wR} 2=0.2068$
Absolute structure parameter: 2(3)
Largest diff. peak and hole: 0.336 and -0.332 e. \AA^{-3}

Table 13: Atomic coordinates

x		y		$\mathrm{Z}(\mathrm{eq})$		
$\mathrm{O}(1)$	$7463(3)$	$6919(9)$	$3156(2)$	$36(1)$		
$\mathrm{O}(2)$	$5023(4)$	$8872(10)$	$1382(3)$	$46(1)$		
$\mathrm{O}(3)$	$7118(4)$	$10095(9)$	$1771(2)$	$40(1)$		
$\mathrm{O}(4)$	$8428(4)$	$8255(9)$	$389(2)$	$39(1)$		
$\mathrm{O}(5)$	$7638(4)$	$8989(9)$	$-2957(2)$	$39(1)$		
$\mathrm{C}(1)$	$7353(5)$	$5087(13)$	$3822(3)$	$34(1)$		
$\mathrm{C}(2)$	$8339(5)$	$4359(14)$	$4494(4)$	$40(2)$		
$\mathrm{C}(3)$	$8028(6)$	$2491(15)$	$5099(4)$	$44(2)$		
$\mathrm{C}(4)$	$6810(6)$	$1338(15)$	$5020(4)$	$43(2)$		
$\mathrm{C}(5)$	$5843(5)$	$2003(14)$	$4331(4)$	$41(2)$		
$\mathrm{C}(6)$	$6127(5)$	$3984(13)$	$3715(3)$	$31(1)$		
$\mathrm{C}(7)$	$5438(5)$	$5230(13)$	$2963(3)$	$32(1)$		
$\mathrm{C}(8)$	$6253(5)$	$6965(13)$	$2647(4)$	$32(1)$		
$\mathrm{C}(9)$	$6041(5)$	$8750(12)$	$1867(4)$	$34(1)$		
$\mathrm{C}(10)$	$7052(5)$	$11756(14)$	$999(3)$	$38(2)$		
$\mathrm{C}(11)$	$7190(5)$	$9668(12)$	$300(3)$	$34(1)$		
$\mathrm{C}(12)$	$8000(6)$	$10372(13)$	$-300(3)$	$35(1)$		
$\mathrm{C}(13)$	$7747(5)$	$9125(14)$	$-1161(3)$	$37(1)$		
$\mathrm{C}(14)$	$8942(5)$	$8490(13)$	$-1486(3)$	$37(1)$		
$\mathrm{C}(15)$	$8712(6)$	$7508(14)$	$-2391(4)$	$37(1)$		
$\mathrm{C}(16)$	$7544(6)$	$5780(12)$	$-2780(4)$	$37(2)$		
$\mathrm{C}(17)$	$9875(6)$	$7120(20)$	$-2743(4)$	$61(2)$		

Table 14: Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for jm0326t.

$\mathrm{O}(1)-\mathrm{C}(1)$	$1.359(7)$
$\mathrm{O}(1)-\mathrm{C}(8)$	$1.358(6)$
$\mathrm{O}(2)-\mathrm{C}(9)$	$1.182(6)$
$\mathrm{O}(3)-\mathrm{C}(9)$	$1.313(6)$
$\mathrm{O}(3)-\mathrm{C}(10)$	$1.426(6)$
$\mathrm{O}(4)-\mathrm{C}(11)$	$1.419(6)$
$\mathrm{O}(4)-\mathrm{C}(12)$	$1.437(6)$
$\mathrm{O}(5)-\mathrm{C}(16)$	$1.433(6)$
$\mathrm{O}(5)-\mathrm{C}(15)$	$1.442(6)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.352(8)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.365(8)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.361(8)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.356(8)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.365(8)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.393(8)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.381(8)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.323(8)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.452(8)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.477(8)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.450(7)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.458(8)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.488(7)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.486(8)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.462(8)$
$\mathrm{C}(15)-\mathrm{C}(17)$	$1.463(8)$
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(8)$	$104.9(4)$
$\mathrm{C}(9)-\mathrm{O}(3)-\mathrm{C}(10)$	$116.5(4)$
$\mathrm{C}(11)-\mathrm{O}(4)-\mathrm{C}(12)$	$61.0(3)$
$\mathrm{C}(16)-\mathrm{O}(5)-\mathrm{C}(15)$	$61.1(4)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{O}(1)$	$110.4(5)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	$124.0(6)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$125.6(5)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$116.5(5)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$121.5(6)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$121.5(6)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$118.1(5)$
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$106.2(5)$
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$118.3(5)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	$135.5(5)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	$107.4(5)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{O}(1)$	$111.2(5)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$130.2(5)$
$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	$118.6(4)$
$\mathrm{O}(2)-\mathrm{C}(9)-\mathrm{O}(3)$	$125.9(5)$
$\mathrm{O}(2)-\mathrm{C}(9)-\mathrm{C}(8)$	$122.8(5)$

$\mathrm{O}(3)-\mathrm{C}(9)-\mathrm{C}(8)$	$111.3(4)$
$\mathrm{O}(3)-\mathrm{C}(10)-\mathrm{C}(11)$	$110.9(5)$
$\mathrm{O}(4)-\mathrm{C}(11)-\mathrm{C}(12)$	$60.1(3)$
$\mathrm{O}(4)-\mathrm{C}(11)-\mathrm{C}(10)$	$115.3(5)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	$123.0(5)$
$\mathrm{O}(4)-\mathrm{C}(12)-\mathrm{C}(11)$	$58.9(3)$
$\mathrm{O}(4)-\mathrm{C}(12)-\mathrm{C}(13)$	$117.2(5)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$122.6(5)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$114.0(5)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	$115.2(5)$
$\mathrm{O}(5)-\mathrm{C}(15)-\mathrm{C}(16)$	$59.2(3)$
$\mathrm{O}(5)-\mathrm{C}(15)-\mathrm{C}(17)$	$114.5(5)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(17)$	$118.1(6)$
$\mathrm{O}(5)-\mathrm{C}(15)-\mathrm{C}(14)$	$115.5(5)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	$120.7(5)$
$\mathrm{C}(17)-\mathrm{C}(15)-\mathrm{C}(14)$	$116.0(5)$
$\mathrm{O}(5)-\mathrm{C}(16)-\mathrm{C}(15)$	$59.7(3)$

Symmetry transformations used to generate equivalent atoms:

Table15: Anistropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 59

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{O}(1)$	$43(2)$	$26(2)$	$38(2)$	$0(2)$	$10(2)$	$-8(2)$
$\mathrm{O}(2)$	$43(2)$	$35(2)$	$57(3)$	$11(2)$	$7(2)$	$-2(2)$
$\mathrm{O}(3)$	$50(3)$	$32(2)$	$39(2)$	$5(2)$	$14(2)$	$-2(2)$
$\mathrm{O}(4)$	$59(3)$	$23(2)$	$34(2)$	$7(2)$	$9(2)$	$7(2)$
$\mathrm{O}(5)$	$60(3)$	$14(2)$	$41(2)$	$9(2)$	$7(2)$	$1(2)$
$\mathrm{C}(1)$	$45(4)$	$23(3)$	$33(3)$	$-8(3)$	$9(3)$	$11(3)$
$\mathrm{C}(2)$	$35(3)$	$33(3)$	$51(4)$	$1(3)$	$4(3)$	$-4(3)$
$\mathrm{C}(3)$	$57(4)$	$42(4)$	$31(3)$	$0(3)$	$8(3)$	$18(4)$
$\mathrm{C}(4)$	$58(4)$	$39(4)$	$35(3)$	$6(3)$	$14(3)$	$6(3)$
$\mathrm{C}(5)$	$33(3)$	$28(3)$	$63(4)$	$-1(3)$	$16(3)$	$2(3)$
$\mathrm{C}(6)$	$37(3)$	$22(3)$	$34(3)$	$-6(3)$	$11(2)$	$0(3)$
$\mathrm{C}(7)$	$31(3)$	$24(3)$	$40(3)$	$2(3)$	$5(2)$	$4(2)$
$\mathrm{C}(8)$	$32(3)$	$24(3)$	$41(3)$	$0(3)$	$10(3)$	$-1(3)$
$\mathrm{C}(9)$	$36(3)$	$19(3)$	$45(3)$	$-8(3)$	$5(3)$	$-8(3)$
$\mathrm{C}(10)$	$42(3)$	$37(4)$	$35(3)$	$3(3)$	$6(3)$	$-4(3)$
$\mathrm{C}(11)$	$40(3)$	$16(3)$	$44(3)$	$8(3)$	$5(3)$	$-2(2)$
$\mathrm{C}(12)$	$53(4)$	$22(3)$	$33(3)$	$19(3)$	$14(3)$	$-1(3)$
$\mathrm{C}(13)$	$40(3)$	$29(3)$	$41(3)$	$6(3)$	$7(3)$	$4(3)$
$\mathrm{C}(14)$	$49(3)$	$16(3)$	$42(3)$	$9(3)$	$3(3)$	$-1(3)$
$\mathrm{C}(15)$	$46(3)$	$29(3)$	$37(3)$	$12(3)$	$11(3)$	$8(3)$
$\mathrm{C}(16)$	$58(4)$	$13(3)$	$40(4)$	$1(2)$	$11(3)$	$2(3)$
$\mathrm{C}(17)$	$60(4)$	$61(5)$	$66(5)$	$-20(4)$	$22(4)$	$-9(4)$

Table 16: Hydrogen coordinates ($\times 10^{4}$) for 59.

	x	y	z	U(eq)
H(2A)	9180	5101	4537	48
$\mathrm{H}(3 \mathrm{~A})$	8663	1993	5577	52
$\mathrm{H}(4 \mathrm{~A})$	6631	66	5444	52
$\mathrm{H}(5 \mathrm{~A})$	5017	1157	4274	49
$\mathrm{H}(7 \mathrm{~A})$	4563	4909	2723	39
$\mathrm{H}(10 \mathrm{~A})$	7740	13283	1081	46
$\mathrm{H}(10 \mathrm{~B})$	6225	12821	848	46
$\mathrm{H}(11 \mathrm{~A})$	6441	8338	82	41
$\mathrm{H}(12 \mathrm{~A})$	8420	12394	-230	42
$\mathrm{H}(13 \mathrm{~A})$	7209	10567	-1541	44
$\mathrm{H}(13 \mathrm{~B})$	7258	7231	-1171	44
$\mathrm{H}(14 \mathrm{~A})$	9473	10332	-1418	44
$\mathrm{H}(14 \mathrm{~B})$	9436	6898	-1136	44
$\mathrm{H}(16 \mathrm{~A})$	7607	4332	-3228	45
$\mathrm{H}(16 \mathrm{~B})$	6961	5169	-2417	45
$\mathrm{H}(17 \mathrm{~A})$	9623	6468	-3326	92
$\mathrm{H}(17 \mathrm{~B})$	10430	5594	-2420	92
$\mathrm{H}(17 \mathrm{C})$	10333	9036	-2714	92

Appendix B

X-ray crystal data for 74

Table 17: Crystal data and refinement for 74.
Identification code: jm0301m (74)
Empirical formula: $\quad \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{Br} \mathrm{O}_{4}$
Formula weight: $\quad 341.20$
Temperature: $\quad 295(2) \mathrm{K}$
Wavelength: $0.71073 \AA$
Crystal system: Monoclinic
Space group: P2(1)
Unit cell dimensions: $\mathrm{a}=9.1201(11) \AA \quad \mathrm{a}=90^{\circ}$.
$\mathrm{b}=5.8260(7) \AA \quad \mathrm{b}=98.308(2)^{\circ}$.
$\mathrm{c}=14.1916(17) \AA \mathrm{g}=90^{\circ}$.
Volume: \quad 746.14(16) \AA^{3}
Z:
2
Density (calculated): $1.519 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient: $2.764 \mathrm{~mm}^{-1}$
F(000): 348
Crystal size: $\quad 0.36 \times 0.21 \times 0.21 \mathrm{~mm}^{3}$
Theta range for data collection: $\quad 2.26$ to 29.99°.
Index ranges: $\quad-12<=\mathrm{h}<=12,-8<=\mathrm{k}<=8,-19<=\mathrm{l}<=19$
Reflections collected: 8639
Independent reflections: $\quad 4258[\mathrm{R}($ int $)=0.1123]$
Completeness to theta $=$
29.99°
99.6 \%

Absorption correction: None
Max. and min. transmission: 0.5944 and 0.4361
Refinement method: Full-matrix least-squares on F2
Data / restraints / parameters: 4258 / 1 / 181
Goodness-of-fit on F2: $\quad 0.656$
Final R indices [I>2sigma(I)]: $\quad \mathrm{R} 1=0.0457, \mathrm{wR} 2=0.0936$

R indices (all data):	$\mathrm{R} 1=0.1118, \mathrm{wR} 2=0.1077$
Absolute structure parameter:	$-0.009(12)$
Largest diff. peak and hole:	0.468 and -0.321 e. \AA^{-3}

Table 18: Atomic coordinates

x		y	z	$\mathrm{U}(\mathrm{eq})$
Br	$8942(1)$	$6548(1)$	$-907(1)$	$72(1)$
$\mathrm{O}(1)$	$4726(3)$	$1738(7)$	$2198(2)$	$59(1)$
$\mathrm{C}(1)$	$7726(5)$	$5645(8)$	$5(3)$	$46(1)$
$\mathrm{O}(2)$	$4743(4)$	$5446(5)$	$2598(2)$	$55(1)$
$\mathrm{C}(2)$	$7043(5)$	$3592(8)$	$-73(3)$	$50(1)$
$\mathrm{C}(3)$	$6174(5)$	$2937(8)$	$615(3)$	$47(1)$
$\mathrm{O}(3)$	$2695(4)$	$8687(6)$	$3029(2)$	$66(1)$
$\mathrm{O}(4)$	$3340(4)$	$5686(4)$	$5241(2)$	$52(1)$
$\mathrm{C}(4)$	$6026(4)$	$4415(7)$	$1365(3)$	$37(1)$
$\mathrm{C}(5)$	$6722(4)$	$6512(12)$	$1414(3)$	$52(1)$
$\mathrm{C}(6)$	$7623(5)$	$7097(8)$	$749(3)$	$58(2)$
$\mathrm{C}(7)$	$5092(4)$	$3646(8)$	$2088(3)$	$41(1)$
$\mathrm{C}(8)$	$3791(6)$	$5001(8)$	$3324(4)$	$52(1)$
$\mathrm{C}(9)$	$3507(5)$	$7295(6)$	$3726(3)$	$43(1)$
$\mathrm{C}(10)$	$2560(5)$	$7103(7)$	$4527(3)$	$40(1)$
$\mathrm{C}(11)$	$2237(5)$	$9380(8)$	$4950(3)$	$53(1)$
$\mathrm{C}(12)$	$1586(5)$	$9015(9)$	$5863(3)$	$52(1)$
$\mathrm{C}(13)$	$1656(5)$	$7049(7)$	$6302(3)$	$42(1)$
$\mathrm{C}(14)$	$2433(6)$	$5075(8)$	$5942(3)$	$59(1)$
$\mathrm{C}(15)$	$922(5)$	$6573(13)$	$7175(3)$	$58(1)$

Table 19: Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for 74.

$\mathrm{Br}-\mathrm{C}(1)$	$1.896(4)$
$\mathrm{O}(1)-\mathrm{C}(7)$	$1.177(6)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.346(6)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.367(6)$
$\mathrm{O}(2)-\mathrm{C}(7)$	$1.338(5)$
$\mathrm{O}(2)-\mathrm{C}(8)$	$1.463(5)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.397(6)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.391(6)$
$\mathrm{O}(3)-\mathrm{C}(9)$	$1.405(5)$
$\mathrm{O}(4)-\mathrm{C}(10)$	$1.416(5)$
$\mathrm{O}(4)-\mathrm{C}(14)$	$1.427(5)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.374(7)$
$\mathrm{C}(4)-\mathrm{C}(7)$	$1.495(5)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.381(5)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.491(6)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.527(5)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.503(6)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.516(6)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.302(6)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.481(6)$
$\mathrm{C}(13)-\mathrm{C}(15)$	$1.517(5)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	$122.1(4)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Br}$	$120.0(3)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{Br}$	$17.9(3)$
$\mathrm{C}(7)-\mathrm{O}(2)-\mathrm{C}(8)$	$116.9(3)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$119.2(4)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$119.5(4)$
$\mathrm{C}(10)-\mathrm{O}(4)-\mathrm{C}(14)$	$111.2(3)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	$119.6(4)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(7)$	$122.4(4)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(7)$	$117.9(4)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$120.0(4)$
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$119.3(5)$

Table 20: Anisotropic displacement parameters

	U^{11}		U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
Br	$70(1)$	$103(1)$	$51(1)$	$0(1)$	$37(1)$	$-9(1)$	
$\mathrm{O}(1)$	$86(2)$	$38(2)$	$62(2)$	$-1(2)$	$36(2)$	$-12(2)$	
$\mathrm{C}(1)$	$46(3)$	$66(4)$	$31(2)$	$3(2)$	$21(2)$	$4(2)$	
$\mathrm{O}(2)$	$76(2)$	$44(2)$	$53(2)$	$-2(1)$	$43(2)$	$-6(2)$	
$\mathrm{C}(2)$	$57(3)$	$56(3)$	$42(3)$	$-12(2)$	$18(2)$	$-2(3)$	
$\mathrm{C}(3)$	$53(3)$	$40(2)$	$50(3)$	$-6(2)$	$20(2)$	$-7(2)$	
$\mathrm{O}(3)$	$73(2)$	$77(2)$	$56(2)$	$28(2)$	$34(2)$	$11(2)$	
$\mathrm{O}(4)$	$62(2)$	$53(2)$	$47(2)$	$13(1)$	$27(2)$	$20(2)$	
$\mathrm{C}(4)$	$39(2)$	$36(2)$	$39(2)$	$2(2)$	$15(2)$	$4(2)$	
$\mathrm{C}(5)$	$64(3)$	$55(3)$	$45(2)$	$-18(3)$	$30(2)$	$-17(4)$	
$\mathrm{C}(6)$	$67(3)$	$50(4)$	$65(3)$	$-7(2)$	$34(3)$	$-15(2)$	
$\mathrm{C}(7)$	$38(2)$	$53(3)$	$32(2)$	$0(2)$	$7(2)$	$1(2)$	
$\mathrm{C}(8)$	$66(3)$	$49(3)$	$47(3)$	$0(2)$	$33(3)$	$-9(3)$	
$\mathrm{C}(9)$	$48(3)$	$38(3)$	$46(3)$	$3(2)$	$20(2)$	$-6(2)$	
$\mathrm{C}(10)$	$45(2)$	$35(3)$	$45(2)$	$3(2)$	$21(2)$	$-2(2)$	
$\mathrm{C}(11)$	$65(3)$	$48(3)$	$51(3)$	$4(2)$	$28(2)$	$0(3)$	
$\mathrm{C}(12)$	$51(3)$	$53(3)$	$61(3)$	$-2(3)$	$34(2)$	$6(2)$	
$\mathrm{C}(13)$	$48(2)$	$42(3)$	$40(2)$	$-3(2)$	$18(2)$	$-6(2)$	
$\mathrm{C}(14)$	$84(4)$	$55(3)$	$46(3)$	$15(2)$	$34(3)$	$13(3)$	
$\mathrm{C}(15)$	$72(3)$	$67(3)$	$41(2)$	$-4(4)$	$26(2)$	$-6(4)$	

Table 21: Hydrogen coordinates (x 10^{4}) for 74.

	x		y	$\mathrm{zU}(\mathrm{eq})$
$\mathrm{H}(2 \mathrm{~A})$	7148	2621	-579	61
$\mathrm{H}(3 \mathrm{~A})$	5697	1521	571	56
$\mathrm{H}(3 \mathrm{~B})$	3263	9539	2797	99
$\mathrm{H}(5 \mathrm{~A})$	6587	7539	1896	63
$\mathrm{H}(6 \mathrm{~A})$	8154	8464	807	70
$\mathrm{H}(8 \mathrm{~A})$	4285	3997	3816	62
$\mathrm{H}(8 \mathrm{~B})$	2870	4289	3043	62
$\mathrm{H}(9 \mathrm{~A})$	4452	8039	3966	51
$\mathrm{H}(10 \mathrm{~A})$	1620	6359	4277	49
$\mathrm{H}(11 \mathrm{~A})$	1543	10235	4499	63
$\mathrm{H}(11 \mathrm{~B})$	3144	10266	5082	63
$\mathrm{H}(12 \mathrm{~A})$	1120	10240	6117	63
$\mathrm{H}(14 \mathrm{~A})$	3048	4346	6473	71
$\mathrm{H}(14 \mathrm{C})$	1703	3960	5669	71
$\mathrm{H}(15 \mathrm{D})$	466	7952	7363	87
$\mathrm{H}(15 \mathrm{~A})$	1654	6059	7686	87
$\mathrm{H}(15 \mathrm{~B})$	181	5406	7029	87

BIBLIOGRAPHY

[1] Boivin, T. L. Tetrahedron 1987, 43, 3309-3362
[2] McDonald, F.E.; Bravo, F.; Wang, X.; Wei, X.; Toganoh, M.; Rodriguez, J. R.; Do, B.; Neiwert, W. A.; Hardcastle, K. I. J. Org. Chem. 2002, 67, 2515-2523.
[3] Cane, D. E.; Celmer, W. D.; Westley, J. W. J. Am. Chem. Soc. 1983, 105, 3594-3600.
[4] Townsend, C. A.; Basak, A. Tetrahedron 1991, 47, 2591-2602.
[5] Jamison, T. F.; Heffron, T. P. Org. Lett. 2002, 5, 2339-2342.
[6] Elliot, M. C.; Williams, E. J. Chem. Soc., Perkin Trans. 1 2001, 2302-2340.
[7] Marmaster, F. P.; West, F. G. Chem. Eur. J. 2002, 8, 4347-4353.
[8] Paterson, I., Norcross, R. D. Chem. Rev. 1995, 95, 2041-2114.
[9] Alvarez, E.; Candenas, M-L.; Perez, R.; Ravelo, J. L.; Martin, J. D. Chem. Rev. 1995, 95, 1953-1980.
[10] Smimizu. Y. Chem. Rev. 1993, 93, 1685-1698.
[11] Kishi, Y.; Palmer, T. S.; Okigawa, M.; Vranesic, B.; Schmid, G.; Nakata, T. J. Am. Chem. Soc. 1978, 100, 2933-2953.
[12] Kishi, Y.; Nakata, T. J. Tetrahedron Lett. 1978, 31, 2745-2748.
[13] Corey, E. J.; Xiong, Z. J. Am. Chem. Soc. 2002, 122, 9328-9329.
[14] Mori, Y.; Yaegashi, K.; Furukawa, H. J. Am. Chem. Soc. 1996, 118, 8158-8159.
[15] Paterson, I.; Boddy, I.; Mason, I. Tetrahedron Lett. 1987, 28, 5205-5208.
[16] McDonald, F. E.; Bravo, F.; Neiwert, W. A.; Do, B.; Hardcastle, K. I. Org. Lett. 2004, 6, 4487-4489.
[17] Wipf, P.; Xu, W.; Kim, H.; Takahashi, H. Tetrahedron 1997, 53, 16575-16596.
[18] Giner, J-L.; Li, X.; Mullins, J. J. J. Org. Chem. 2003, 68, 10079-10086.
[19] Wipf, P.; Methot, J-L. Org. Lett. 1999, 1, 1253-1255.
[20] Isono, K.; Nakamura, G. J. Antibiotic 1983, 36, 1468-1472.
[21] Buchi, G.; Vogel, D. E. J. Org. Chem. 1983, 48, 5406-5409.
[22]Denmark, S. E.; O’Conner, S. P. J. Org. Chem. 1997, 62, 584-590.
[23] Kocienski, P. J.; Brown, R. C. D.; Pommier, A.; Procter, M.; Schmidt, B. J. Chem. Soc., Perkin Trans. 1 1998, 9-39.
[24] Kocienski, P.J.; Jarowicki, K.; Stepanenko, V.; Pmooier, A. J. Org. Chem. 2003, 68, 4008-4013
[25] Kocienski, P. J; Ashworth, P.; Broadbelt, B.; Jankowski, P.; Pimm, A.; Bell, R. Synthesis 1995, 199-205.
[26]Ley, S. V.; Fujita, M.; Laine, D. J. Chem. Soc., Perkin Trans. 1, 1999, 1639-1645.
[27] Ishikawa, I. Tetrahedron 1998, 54, 2433-2448.
[28] Mukai, C.; Nomara.I.; Kitagaki, S. J. Org. Chem. 2003, 68, 1376-1385.
[29]Denmark, S.E.; Kramps, L.A.; Montgomery, J. I. Angew. Chem. Int. Ed. 2002, 21, 4122

[^0]: ${ }^{\text {a }}$ Prepared via Method A. ${ }^{\text {b }}$ Prepared via Method B

[^1]: ${ }^{\text {a }}$ A 1:1 diastereomeric ratio was determined for each substrate via ${ }^{1} \mathrm{H}$ NMR analysis.

[^2]: ${ }^{\mathrm{a}} 10 \mathrm{~mol} \% \mathrm{Cp}_{2} \mathrm{ZrCl}_{2} / 20 \mathrm{~mol} \% \mathrm{AgClO}_{4}$. ${ }^{\mathrm{b}}$ Isolated yield. ${ }^{\mathrm{c}}$ Ratio based on the integration of peaks at 5.33 (minor) and 5.20 (major) ppm in the crude ${ }^{1} \mathrm{H}$ NMR after acylation.

